Никола тесла и передача электроэнергии переменным током. Изобретения николы теслы, или мир глазами гения Изобретение переменного тока

Задавать вопрос «кто придумал электричество?» не совсем корректно. Более правильно спрашивать, кто открыл электричество? Ответить однозначно невозможно. История электричества уходит своими корнями в глубину веков существования человеческой цивилизации.

Хронология основных открытий и изобретений

В современном мире каждый ребёнок в сознательном возрасте сталкивается в доме с электричеством. Первые упоминания о наблюдениях в природе этого физического явления относятся к IV веку д. н. э. Великий философ Аристотель изучал поведение угрей, которые поражали свои жертвы электрическими разрядами.

Легендарный учёный Фалес Милетский, живший в Древней Греции (V век д.н.э.), упоминал в своих трудах о таком явлении, как электричество. Он наблюдал за тем, как янтарь, натёртый комком шерсти, притягивал к себе различную мелочь. Историки признают время описания опытов периодом открытия электричества.

Важно! Термин «электричество» происходит от слова «электрон», что означает янтарь.

Лишь, начиная с 17 века, стартует череда открытий и изобретений, касающаяся электроэнергии. Об истории электричества сообщает Википедия достаточно подробно. Вот краткий перечень основных вех развития науки об электрической энергии:

  1. Англичанин Уильям Гилберт в начале XVII века, изучая магнитоэлектрические явления, ввёл впервые такое понятие, как электричество (янтарность).
  2. Через два года в 1663 году бургомистр Магдебурга Отто фон Генрике продемонстрировал электростатический прибор, состоящий из серного шара, насаженного на металлическую ось. На поверхности сферы в результате трения о ладони накапливался статический заряд тока, который своим магнитным полем притягивал или отталкивал мелкие предметы.

  1. Почти через 60 лет (1729 г.) английский физик Стивен Грей опытным путём определил способность проводить ток различных материалов.
  2. Четыре года спустя (1733 г.) французский физик Шарль Дюфе выдвинул сомнительную версию о существовании двух типов электричества, имеющих стеклянное и смоляное происхождение. Он пояснял это тем, что он получал электрический заряд на поверхности стеклянного стержня и комка смолы путём их трения о шёлк и шерсть, соответственно.
  3. В 1745 году была изобретена Лейденская банка – прообраз современного конденсатора. Автором изобретения был голландский исследователь Питер ван Мушенброк.

  1. В это же время выдающиеся русские учёные Рихман и Ломоносов в Санкт-Петербурге добиваются получения искусственного грозового разряда в лабораторных условиях. Во время проведения очередного эксперимента, получив электрический удар, погибает Рихман.
  2. 1785 г. ознаменовался регистрацией в Лондоне закона Кулона, носящего имя его автора. Учёный обосновал величину силы взаимодействия точечных зарядов в зависимости от длины промежутка между ними.
  3. Спустя несколько лет, в 1791 году, Гальвани выпускает в свет трактат, в котором доказывает протекание электрических процессов в мышцах животных.
  4. В этой же стране Вольта в 1800 г. демонстрирует гальванический элемент – источник постоянного тока. Прибор представлял вертикальное сооружение из серебряных и цинковых дисков, переложенных бумагой, вымоченной в соляном растворе.

  1. Через двадцать лет датский физик Эрстед обнаружил существование электромагнитного эффекта. Размыкая контакты электрической цепи, он заметил колебания стрелки рядом положенного компаса.
  2. Спустя год, великий французский учёный Ампер в 1821 г. обнаружил магнитное поле вокруг проводника переменного тока.
  3. 1831 г. – Фарадей создаёт первый в мире генератор тока. Двигая намагниченный сердечник внутри катушки из металлической проволоки, он зафиксировал проявление электрического заряда в её витках. Учёный был одним из тех физиков, кто первый создал электричество в лабораторных условиях. Им же была обоснована теория об электромагнитной индукции.

Обратите внимание! По мере накопления практики в результате многочисленных опытов стала возникать потребность теоретического обоснования явлений и появления науки, связанной с электричеством.

Этапы создания теории

Каждая ступень строительства электрической теории возводилась на основе личных открытий выдающихся учёных физиков. Их фамилии составляют список имён, кому принадлежит изобретение электричества. Теоретическая научная база электричества развивалась постепенно, по мере накопления экспериментального опыта.

Появление термина

Выше уже упоминалось то, что понятие «электричество» впервые было введено в употребление Уильямом Гилбертом в 1600 г. С этого момента отмечают дату, когда появилось электричество.

Первая электростатическая машина

Демонстрируемый прибор в 1663 г. бургомистром Магдебурга Отто фон Генрике считают первой электростатической машиной. Она представляла собой смоляной шар, насаженный на металлический стержень.

В 1745 году случилось знаменательное событие – голландский исследователь Питер ван Мушенброк создал электростатический конденсатор. Прибор был назван в честь города, где было сделано изобретение, – Лейденской банкой.

Два вида зарядов

Бенджамин Франклин ввёл понятие о полярности зарядов. С тех пор аксиомой является то, что любой электрический потенциал имеет отрицательный и положительный полюсы.

Бенджамин Франклин

В 1747 году американский научный исследователь Бенджамин Франклин создаёт собственную теорию об электричестве. Он представил природу электричества как нематериальную жидкость в виде неких флюидов.

От теории к точной науке

Теоретическая база, накопленная за несколько последних столетий, позволила в ХХ веке полученные знания переформатировать в точную науку. Основополагающие открытия и изобретения появились, благодаря тем учёным, кто открыл природу электрического тока. Точно установить, в каком году изобрели искусственное электричество, невозможно. Это произошло в основном в течение 18 и 19 веков.

Назвать того, кто первый изобрёл ток, довольно затруднительно. Скорее всего, это можно приписать целому ряду великих учёных, упомянутых выше. К этому приложили руку выдающиеся физики Америки, Англии, Франции, Италии, России и многих других стран Европы.

Несомненную бессмертную славу заслужили такие изобретатели и теоретики электротехники, как Эдисон и Тесла. Последний много приложил усилий по теоретическому обоснованию природы магнетизма, успешно реализовывал его на практике. Тесла является создателем беспроводного электричества.

Закон взаимодействия зарядов

Одной из фундаментальных скрижалей науки об электричестве является закон взаимодействия зарядов, известный как закон Кулона. Он гласит о том, что сила взаимодействия двух точечных зарядов находится в прямой пропорциональной зависимости от произведения количеств зарядов и обратно пропорциональна расстоянию в квадрате между этими точками.

Изобретение батареи

Документальным подтверждением изобретения электрической батареи считается предложенное устройство итальянским учёным Алессандро Вольта. Прибор назвали вольтовым столбом. Он представлял собой своеобразную этажерку, сложенную из медных и цинковых пластинок, переложенных кусками войлока, смоченного раствором серной кислоты.

Вверху и внизу столба создавался электрический потенциал, разряд которого можно было почувствовать, приложив к столбу ладони рук. В результате взаимодействия атомов металлов, возбуждённых электролитом, внутри батареи накапливалась электроэнергия.

Изобретатель гальванического электричества, Алессандро Вольта, положил начало появлению того, что сегодня называют батарейками.

Появление понятие тока

Выражение «ток» возникло одновременно с появлением электричества в лаборатории физика Уильяма Гилберта в 1600 году. Ток характеризует направленность электрической энергии. Он может быть как переменным, так и постоянным.

Закон электрической цепи

Бесценный вклад в развитие теории электричества внёс в XIX веке немецкий физик Кирхгофа. Он был автором терминов таких, как ветвь, узел, контур. Законы Кирхгофа стали основой построения всех электрических цепей радиоэлектронных и радиотехнических приборов и устройств.

Первый закон гласит: «Сумма электрических зарядов, идущих в узел в течение определённого времени, равна сумме зарядов, уходящих из него за это же время».

Второе положение Кирхгофа можно выразить так: «При прохождении токов через все ветви контура падает потенциал. При их возвращении в исходный узел потенциал полностью восстанавливается и достигает своей первоначальной величины. То есть утечка энергии в пределах замкнутого электрического контура равняется нулю».

Электромагнитная индукция

Явление возникновения электрического тока в замкнутом контуре проводника при прохождении через него переменного магнитного поля описал в 1831 году Фарадей. Теория электромагнитной индукции позволила открывать последующие законы электротехники и изобретать различные модели генераторов как постоянного, так и переменного тока. Эти устройства демонстрируют, как появляется и проистекает электричество в результате действия электромагнитной индукции.

Использование электрического освещения в России

Ещё со школьной скамьи люди помнят историю появления электрических лампочек в России. Первый опыт в создании этих приборов был проведён русским учёным Яблочковым. Их устройство было основано на возникновении искры между двумя каолиновыми электродами.

В 1874 г. Яблочков впервые представил прибор освещения с использованием электрической дуги. Этот год можно считать отправной точкой, когда впервые появилось световое электричество в России. Впоследствии свечи Яблочкова использовались как дуговые прожектора на паровозах.

До появления ламп накаливания Эдисона угольные свечи Яблочкова ещё долго использовались как единственный источник электрического освещения в России.

Производство и практическое использование

Со времён появления первого электричества до массового производства электричества и его практического применения должно было произойти много открытий, и внедрено изобретений в сферу генерирования и передачи электрической энергии.

Генерирование и передача электроэнергии

Со временем стали придумывать различные способы генерирования электричества. С появлением мобильных, а впоследствии гигантских электростанций, возникла проблема передачи электричества на большие расстояния.

Позволить решить этот вопрос помогла научно-техническая революция. В результате были построены огромные сети электропередач, охватывающие страны и целые континенты.

Применение

Практически невозможно назвать сферу деятельности человечества, где бы ни было задействовано электричество. Оно является основным источником энергии во многих жизнеобеспечивающих сферах деятельности человека.

Современный виток исследований

Грандиозный рывок в развитии электротехники совершил легендарный учёный, физик и изобретатель Никола Тесла на рубеже XIX, XX веков. Многие изобретения Теслы ещё ждут нового витка исследований в области электротехники для того, чтобы они были внедрены в жизнь.

Сейчас ведутся исследовательские работы по получению новых сверхпроводимых материалов, созданию совершенных компонентов электрических цепей с высоким КПД.

Дополнительная информация. Открытие графена и получение из него новых токопроводящих материалов предрекают грандиозные перемены в сфере использования электричества.

Наука не стоит на месте. С каждым годом человечество становится свидетелем появления более совершенных источников электроэнергии, вместе с этим и создания приборов, машин и различных агрегатов, потребляющих экологически чистую энергию в виде электрического тока.

Видео

Печатающий телеграф (слева), фонограф (справа), лампа накаливания и еще более тысячи изобретений, защищенных патентами…

…сделали Томаса Эдисона королем изобретателей


Генератор переменного тока, ставший основой современной электроэнергетики и экзотическая высоковольтная высокочастотная катушка — изобретения другого «электрического» гения…

Телефон и фонограф, системы радиолокации и кинокамера, диктофон и электрогенераторы, телеуправляемые механизмы, высокочастотная техника, паровые турбины и магнитный способ сепарации железной руды — буквально ко всему два этих великих изобретателя — Томас Эдисон и Никола Тесла — приложили свои руки и головы. Но, пожалуй, главная их заслуга — свет на улицах и в домах. Они заложили основы всей системы электрификации, от электростанций и до ламп накаливания, от генераторов и до небольших остроумных деталей — цоколей, патронов, предохранителей и счетчиков. Именно электрические устройства стали полем битвы двух гениев.

Сверхчеловек

Родившийся в Хорватии Никола Тесла довольно рано проявил признаки своего научного гения: уже в детстве его переполняли самые фантастические грезы. Он читал запоем, и герои книг будили в нем желание стать сверхчеловеком: в распорядке дня на сон отводилось не более четырех часов, Тесла изнурял себя учебой, уделяя внимание не только техническим наукам, но и профессионально разбирался в музыке, лингвистике, философии, свободно общался на нескольких языках. Со стороны он, впоследствии названный Резерфордом «пророком электричества», походил на одержимого: таким и счел его профессор Пражского университета Пешль, которому 24-летний студент изложил свою идею генератора переменного тока. Пешль пренебрежительно пожал плечами, но авторитеты для молодого изобретателя перестали существовать. Распродав все свое имущество, он отправился в Америку, к легендарному «королю изобретателей» Томасу Эдисону.

Король изобретателей

Будучи старше Теслы на девять лет, Эдисон уже гремел по всему миру. Он был самоучкой: после того, как однажды учитель назвал Томаса «полным тупицей», возмущенная мать забрала его из школы, и тот продолжил образование самостоятельно. Томас много читал и, не имея достаточно средств на восхитительные игрушки, которыми обладали сверстники, конструировал их сам, попутно дорабатывая и совершенствуя механизмы. На всю жизнь он сохранит такой подход к работе: беря за основу уже существующие принципы и изобретения, улучшать их, доводя до ума.

Гульельмо Маркони признан новатором в радио, Александр Белл сконструировал первый телефон, Луи Жан и Огюст Люмьеры — киноаппарат, но коммерческую выгоду от этих изобретений сумел получить только Томас Альва Эдисон, усовершенствовав их, сделав удобными, популярными и продаваемыми.

Эдисон усовершенствовал телеграфный аппарат и «мимеограф», самопишущее электронное перо: специальная игла наносила на лист бумаги едва заметные отверстия, а типографский валик оттискивал по этому трафарету необходимое число копий. В наши дни этот механизм используется в машинках для татуировок, а во времена Эдисона мимеограф, «дедушка ксерокса», был чрезвычайно популярен среди бизнесменов. Это позволило молодому инженеру не только встать на ноги, но и организовать собственную лабораторию в Менло-Парке, в короткий срок превратив ее в настоящую «фабрику изобретений», на которой трудились десятки ученых и техников. Патенты на микрофон, динамо-машину и другие изобретения сыпались, как из рога изобилия.

Переменный и постоянный

Сюда и направился Никола буквально прямиком с борта трансатлантического лайнера. В те годы Эдисон, уже запатентовавший лампу накаливания и генератор постоянного тока, совершенствовал свою систему электрификации города, опытная модель которой успешно действовала в деловой части Манхэттена. Изучив проект Теслы, Эдисон решил отложить его «под сукно», тем временем предложив молодому сербу поработать над его системой на основе постоянного тока. Тот согласился, однако в тайне продолжил работу над совершенствованием собственного генератора переменного тока и уже через год получил на него патент. Но ревнивый начальник развернул против проекта Теслы настоящую войну, и Тесле пришлось покинуть Менло-Парк.

Тормозные деньги

К счастью, известный промышленник и изобретатель Джордж Вестингауз оказался более сметливым человеком. Присутствуя на одном из докладов Теслы, он сразу оценил его идеи и, потратив миллион долларов, выкупил у него патенты на генераторы, электродвигатели, трансформаторы и другие механизмы. Вскоре принадлежавшая фирме Вестингауза Ниагарская ГЭС начала генерировать переменный ток. Казалось бы, успех полный, однако Эдисон не оставил попыток одолеть строптивого «ученика».

Потерпев фиаско в доказательстве экономической нецелесообразности использования переменного тока, он обратился к другим аргументам — создавал образ смертельной опасности, которой подвергает себя всякий, кто рискнет воспользоваться приборами и механизмами, питающимися переменным электричеством. Действительно, вопрос стоял нешуточный — прежде всего, с финансовой стороны.

Собачьи аргументы

Как раз в те годы парламентом штата Нью-Йорк была создана специальная комиссия для выбора «наиболее гуманного способа приведения в исполнение смертных приговоров». Воспользовавшись моментом, Эдисон устроил показательную демонстрацию: нескольких кошек и собак при большом стечении народа заманили на металлическую пластину, находящуюся под напряжением в 1000 вольт (разумеется, переменным). Пресса подробно живописала смерть несчастных животных.

В борьбу включились и «птенцы гнезда Эдисононова», бывшие и нынешние работники Менло-Парка: инженеры Браун и Питерсон пропустили через собаку постоянный ток напряжением до 1000 вольт — собака мучилась, но не умирала, но переменный ток даже 330 вольт убивал ее мгновенно. Вестингауз использовал все свое влияние, пытаясь опротестовать такие «показательные выступления». В New York Times он опубликовал открытое письмо, в котором обвинил Брауна в том, что тот действует «в интересах и на средства» принадлежащей Эдисону компании — но было уже поздно. Джозеф Шапл стал первым в истории преступником, приговоренным к смертной казни на электрическом стуле, а Эдисон, по слухам, лично сконструировал первый такой аппарат, работавший от генераторов «убийственного» переменного тока компании Westinghouse. Приговор был приведен в исполнение в августе 1890 года. «Топором бы у них получилось лучше», — резюмировал Вестингауз.

Человек-молния

Но неутомимый Никола Тесла придумал эффектный ответный ход. Через несколько лет его представление, состоявшееся на Всемирной выставке в Чикаго, потрясло весь мир. С совершенно спокойным видом он пропускал через себя переменный ток напряжением в миллионы вольт — молнии плясали на поверхности его кожи, но сам он оставался невредимым. А когда объятый электрическими разрядами «сумасшедший» брал в руки не подключенные ни к каким проводам лампы накаливания, они послушно загорались в его руках. Это казалось настоящим волшебством. И вскоре Эдисону пришлось пойти на перемирие: эдисоновская компания General Electric вынуждена была приобрести лицензии на электрическое оборудование у компании Westinghouse.

Сумасшедший гений

Если за Эдисоном с годами все больше закреплялась репутация «изобретателя-предпринимателя», то Никола Тесла приобретал славу сумасшедшего гения. Он мог часами в одиночестве прохаживаться по парку, декламируя наизусть «Фауста», в гостиничную комнату соглашался вселиться лишь в том случае, если ее номер был кратен трем, а микробов боялся панически. Большинство своих изобретений он совершал в голове, так говоря об этом: «Когда появляется идея, я начинаю дорабатывать ее в своем воображении: меняю конструкцию, усовершенствую и «включаю» прибор, чтобы он зажил у меня в голове. Мне совершенно все равно, подвергаю ли я тестированию свое изобретение в лаборатории или в уме». Но на практике не все проходило гладко. Однажды в ходе одного из экспериментов Теслы на расстоянии нескольких километров от его лаборатории в Нью-Йорке стены окружающих домов принялись вибрировать — и только вмешательство полиции спасло их от обрушения. «Я мог бы обрушить Бруклинский мост за час», — признавался позже изобретатель. Но современники с готовностью прощали ему и не такие «шалости». Ведь то, что он делал, действительно далеко опережало все, что умела тогда наука.

В 1915 году New York Times сообщила, что Николе Тесле и Томасу Эдисону могут присудить Нобелевскую премию в области физики. Но ни один из них так и не стал нобелевским лауреатом. Оба великих изобретателя отказались получать эту престижную премию: они не смогли простить друг другу прошлых обид.

В этой большой обзорной статье мы поговорим о том, что изобрёл Никола Тесла, выдающийся изобретатель и учёный. Мы постараемся описать все наиболее важные из его изобретений, а также расскажем о тех, о которых вы могли и не знать.

Никола Тесла — это, пожалуй, один из в мире наравне с или , чей вклад в мировую науку крайне трудно переоценить. Родился и вырос Тесла в Сербии, где и получил образование. Уже со студенческих лет он проявлял самостоятельность мышления и тягу к изобретательству. Позже он переезжает во Францию, а затем в США, где и проживает большую часть своей жизни, занимаясь изобретательством. Количество его патентов включает в себя более 150 изобретений и различных усовершенствований. Некоторые даже считают, что именно Никола Тесла изобрёл 20-й век, так как он был не просто практиком, но и теоретиком.

Интересы Теслы лежали в основном в сфере радиотехники и электротехники, а также в области изучения свойств электромагнетизма и передачи электричества на большие расстояния. Основные его изобретения связаны с переменным током и электрическими машинами, использующим его. Также в нашей статье мы поговорим об изобретениях Теслы в области беспроводного освещения и беспроводной передачи электроэнергии.

Жизнь Теслы в целом была трудной и порой крайне неудачной. Далеко не все его изобретения были коммерчески успешными, он часто становился банкротом или жертвой обмана (Эдисон кинул его на большую сумму) или обстоятельств (например, известный пожар в его лаборатории уничтожил множество прототипов).

Безусловно, что теоретический вклад Теслы огромен, но нас в этой статье будут интересовать прежде всего практические реализации его идей и задумок, поэтому давайте посмотрим на список изобретений Николы Тесла. Для удобства навигации по статье предоставляем небольшое содержание:

Переменный ток

DC — постоянный ток, AC — переменный ток

Прежде чем научиться использовать переменный ток, его необходимо сначала получить. В общем-то о переменном токе физики знали уже давно (со времён открытия электромагнитной индукции) и Тесла его как таковой не открывал, но тогда все полагали, что переменный ток — это попросту «мусор», который вряд ли как-то получится использовать. Тесла же был другого мнения и сразу увидел весь потенциал переменного тока.

Постоянный ток непрерывно течёт в одном направлении; переменный ток меняет своё направление 50 или 60 раз в секунду и у него можно изменять напряжение до высоких уровней, минимизируя при этом потери мощности на больших расстояниях. Позже напряжение переменного тока можно понижать, чтобы использовать его на заводах или в жилых домах. Тесла понял, что будущее принадлежит переменному току.

Тесла описал свои двигатели и электрические системы в статьей «Новая система двигателей переменного тока и трансформаторов», которую он презентовал в Американском институте инженеров-электриков в 1888 году. Именно тогда Джордж Вестингауз заинтересовался разработками Теслы, и однажды он посетил его лабораторию и поразился увиденному. Никола Тесла построил модель многофазной системы из понижающих и повышающих трансформаторов переменного тока, а также двигателя переменного тока. Так началось партнёрство Ветсингауза и Теслы. Позже Никола Тесла получил 40 патентов на свои изобретения в США, а Вестингауз выкупил их все, чтобы обеспечить себя богатством, а Америку переменным током.

Ниже мы как раз и поговорим об этих машинах и о том, как в США внедрялась многофазная система электроснабжения.

Генератор переменного тока

Генератор переменного тока — это электрическая машина, которая является составной частью полифазной системы электроснабжения Теслы, о которой речь пойдёт ниже. Генератор создаёт переменный ток, используя механическую работу (например, генераторы, установленные на дамбах, использующие падающую на их лопасти воду).

Мы не будем объяснять принцип работы генератора. Посмотрите видео ниже, если хотите понять подробнее.

Альтернатор Теслы (другое название генератора переменного тока) превосходил все другие по той простой причине, что он был действительно эффективен на практике. Свой генератор Тесла изобрёл ещё будучи на 2 курсе и уже тогда обращался к своим преподавателям с идеей использования переменного тока, но от его идей все отмахивались, как от бредовых. Некоторые профессора даже просто смеялись над его изобретениями.

В 1882 году Тесла работает в Париже и создаёт первый рабочий прототип своего генератора.

Приехав в 1884 году в США, Тесла направился к тогда уже известному изобретателю и коммерсанту в области электричества Томасу Эдисону и устроился к нему на работу. Попутно Тесла предлагал Эдисону свои идеи по использованию переменного тока, но Эдисон считал, что он сошёл с ума, раз думает, что переменный ток можно хоть как-то использовать. Дошло даже до того, что Тесла, не поняв сарказма Эдисона, подумал, что получит большую сумму от Эдисона, если сделает несколько десятков определённых изобретений на заказ. Тесла их сделал, а Эдисон сказал, что пошутил, а Тесле рекомендовал научиться понимать американский юмор.

В 1891 году Тесла получает в США патент на первый в мире альтернатор.

Многофазный генератор Теслы мощностью 500 л.с. (около 370 кВт) на выставке Вестингауза

Двигатель переменного тока

Двигатель переменного тока или асинхронная машина — это ещё один этап в развитии идей применения переменного тока. Генератор переменного тока мы уже обсудили, значит электричество мы получаем, но что с ним делать дальше? У нас ведь нет машин, которые бы работали от переменного тока! Вот Тесла их и изобрёл.

Патент Теслы на электрический двигатель 1888 года

В 1880-е года множество изобретателей пыталось изобрести рабочие варианты двигателей переменного тока, но сделать этого не удавалось. Галилео Феррарис занимается теоретическим исследованием создания двигателей переменного тока и приходит к ошибочному выводу, что они попросту не могут быть эффективными и коммерчески успешными. Это добавило мотивации изобретателям всего мира, это звучало как вызов — создать эффективный двигатель переменного тока. Тесла отвечает на этот вызов и демонстрирует в 1887 году свой первый вариант двигателя, работающего на переменном токе, а в 1887 году совершенствует свою модель, выпуская вторую машину.

Один из оригинальных электрических моторов Теслы 1888 года.

Основная причина, по которой рациональное использование двигателей переменного тока казалось невозможным, заключалась в том, что они были однофазовыми. Тесла же обосновал теоретически и доказал практически, что можно не ограничиваться одной фазой, а делать две или больше фаз.

На картинке ниже показано схематически устройство двух- и трёхфазных двигателей переменного тока:

Позже Тесла изобретает и патентует множество модифицированных моторов и двигателей переменного тока. Все эти патенты, как писалось выше, Тесла продаёт Вестингаузу.

Двухфазный электрический двигатель переменного тока из коллекции Вестингауза.

4-х фазный электрический двигатель переменного тока из коллекции Вестингауза.

Полифазный электрический двигатель переменного тока из коллекции Вестингауза.

Многофазная система электроснабжения

Тесла обратил внимание, что электрические станции постоянного тока Эдисона неэффективны, а Эдисон уже застроил ими всё Атлантическое побережье США. Чтобы преодолеть недостатки постоянного тока, надо было, по идее Теслы, использовать переменный ток. Многофазной такая система называется потому, что двигатели и генераторы имеют несколько фаз (см. пояснения выше).

Лампы Эдисона были слабыми и неэффективными при использовании постоянного тока. Вся эта система имела один большой недостаток в том, что она не могла транспортировать электричество на расстояние более 3 км из-за неспособности изменять напряжение до высокого уровня, необходимого для передачи на большие расстояния. Поэтому электростанции постоянного тока устанавливались с интервалом в 3 км.

Схема работы многофазных систем электроснабжения

Переменный ток, как писалось выше, мог достигать больших напряжений и поэтому его можно было передавать на огромные расстояния (выйдите из дома и посмотрите на ближайшие высоковольтные линии электропередач, это оно самое).

Когда Эдисон узнал, что у него появился столь мощный конкурент, он понял, что может потерять свою империю постоянного тока. Именно так и началась война между Вестингауза вместе с Теслой против Эдисона, которую назовут войной токов. Эдисон начал усиленно пытаться дискредитировать изобретение Теслы, показывая, что переменный ток более опасен для жизни, чем постоянный.

Стоит также отметить, что когда Тесла приехал в США, то сначала он предложил свои разработки Эдисону, но он назвал всё это вздором и сумасшествием.

Эдисон бил переменным током животных на публике, чтобы привести их в ярость и доказать, что этот вид тока опасен. Однажды Эдисон узнал об идее одного врача, об использовании переменного тока для умерщвления людей. Реализация не застала себя ждать. Так был изобретён электрический стул, который впервые применили к Уильяму Кеммлеру, виновному в убийстве своей любовницы.

Эдисон долго не мог придумать для своего нового изобретения название, но ему больше всего нравилось слово «увестингаузить», правда ни один из них, как мы теперь видим, не прижился.

Тесла тоже не сидел без дела и отвечал на все попытки дискредитации Эдисона. Он стремился наоборот показать, что переменный ток не опасен и показывал это, при помощи скин-эффекта.

Австралийский любитель электрического эксгибиционизма Питер Террен бьёт себя в течение 15 секунд током в 200 000 вольт при помощи катушки Тесла, демонстрируя скин-эффект.

Как мы знаем, Тесла и Вестингауз в конечном итоге победили, поэтому переменный ток стал повсеместным явлением. Понадобилась целая экономическая и юридическая война, чтобы обеспечить Америку и весь мир более прогрессивным изобретением.

Катушка или трансформатор Теслы

Тесла изобрёл свою катушку примерно в 1891 году. В то время он повторял эксперименты Герниха Герца, который обнаружил электромагнитное излучение тремя годами ранее. Тесла решил запустить его устройство вместе с высокоскоростным генератором переменного тока, который он разрабатывал в рамках улучшения системы дугового освещения, но он обнаружил, что ток высокой частоты перегревает стальной сердечник и плавит изоляцию между первичной и вторичной обмотками в катушке Румкорфа, которая использовалась по умолчанию в экспериментах Герца. Для устранения этой проблемы Тесла решает изменить конструкцию таким образом, чтобы образовался воздушный зазор между первичной и вторичной обмотками, вместо изоляционного материала. Тесла сделал так, что сердечник мог быть перемещён в различные положения в катушке. Тесла также установил конденсатор, который обычно используются в таких установках между генератором и его первичной катушкой обмотки, чтобы избежать выгорания катушки. Экспериментируя с настройками катушки и конденсатора, Тесла обнаружил, что он мог бы воспользоваться возникающим резонансом между ними для достижения более высоких частот.

В катушке трансформатора Теслы конденсатор, после пробивания короткой искры, подключался к катушке из нескольких витков (первичная катушка), формируя таким образом резонансный контур с частотой колебания, как правило, 20-100 кГц, определяемый ёмкостью конденсатора и индуктивностью катушки.

Конденсатор заряжался до напряжения, которое необходимо для пробоя воздушного искрового промежутка, при входном линейном цикле, что достигает примерно 10 киловольтам при использовании линейного трансформатора, который подключён через воздушный зазор. Линейный трансформатор был спроектирован так, чтобы иметь более высокую, чем обычно, индуктивность рассеяния (параметр, отражающий неидеальность трансформатора), чтобы выдерживать короткое замыкание, возникающее в то время, когда зазор оставался ионизированным, или в течение нескольких миллисекунд, пока ток высокой частоты не исчезал.

Искровой разрядник настраивался таким образом, чтобы его пробой происходил при напряжении, которое несколько меньше пикового выходного напряжения трансформатора, чтобы максимизировать напряжение на конденсаторе. Внезапный ток, проходящий через искровой промежуток, вызывает резонанс первичной резонансной цепи на её резонансной частоте. Кольцевая первичная обмотка магнитно соединяет энергию с вторичной обмоткой в течение нескольких радиочастотных циклов, пока вся энергия, которая первоначально была в первичной обмотке, не перенесётся на вторичную. В идеале зазор затем прекращает проведение тока (гашение), захватывая всю энергию в колебательный вторичный контур. Обычно промежуток снова начинает расти, а энергия вторичных передач возвращается к первичной цепи в течение ещё нескольких радиочастотных циклов. Цикл энергии может повторяться несколько раз, пока искровой промежуток окончательно не ослабнет. Как только зазор прекратит проводить ток, трансформатор начнёт заряжать конденсатор. В зависимости от напряжения пробоя искрового промежутка, он может срабатывать много раз на протяжении всего цикла переменного тока.

Применение можно разделить на практическое и чисто декоративное. Практическое применение тока катушки Тесла нашли в радиоуправлении, радио и беспроводной передачи энергии для питания различных устройств (например, лампочек). Генератор Теслы обнаружил и неожиданное применение в медицине. Арсен Д’Арсонваль применил токи, создаваемые генератором, для физиотерапевтического воздействия на поверхность кожи и слизистые различных органов человека. Ток проходил по поверхностным слоям кожи и оказывал тонизирующий и оздоровляющий эффект. Также катушки Тесла применяются для работы газоразрядных лапм и обнаружения течи внутри вакуумных систем.

Но гораздо большую распространённость катушки Тесла получили в сфере спецэффектов и декораций, ведь разряды, создающиеся трансформатором Тесла выглядят крайне эффектно и красиво.


Пример работы катушки Тесла можете посмотреть на видео:

Интересно также понаблюдать и за музыкальными свойствами данных катушек, которые достигаются за счёт изменения частоты:

Интересно, что в своё время в 20-м веке пытались продавать катушки Теслы, как эффективный способ защитить вашу машину от угона:

Также подобные катушки используются в различных центрах, чтобы развлечь посетителей и попытаться увлечь молодёжь красотой физических эффектов, а также в аттракционах:

Беспроводное освещение

В 1891 году Тесла усовершенствовал передатчик волн, изобретённый Герцом, который был необходим для радиочастотного снабжения энергией, переделав его в систему освещения, состоящую из газоразрядных ламп.

В этом же году он продемонстрировал в Колумбийском колледже своё изобретение.

Когда мы говорим о том, что освещение беспроводное, не имеются в виду радиоволны, речь идёт об электростатической индукции.

В руках у Теслы две длинные трубки Гейсслера, которые похожи на неоновые лампы.

В 1893 году в Чикаго проходит всемирная выставка, где Тесла демонстрирует своё изобретение. Лампы были не только беспроводными, но и люминесцентными.

В 1894 году новое достижение. Удаётся зажечь фосфорную лампу накаливания в своей лаборатории, используя резонансный метод взаимоиндукции.

Правда широкого коммерческого применения такая лампа найти не смогла, но резонансный метод индуктивной связи сейчас применяется повсеместно в электронике.

Башня Теслы

Тесла не остановился на беспроводной системе освещения и пошёл дальше. Он решил, что можно в принципе не использовать высоковольтные провода для передачи тока и передавать всю электроэнергию посредством воздуха. Для этого он хотел построить огромную экспериментальную установку в Нью-Йорке, известную как башня Теслы или башня Ворденклиф. Позже, проводя свои эксперименты и наблюдения над молниями, Тесла пришёл к ошибочному выводу, что может использовать весь земной шар, чтобы проводить ток.

Одна из страниц патента на башню Теслы

Деньги на строительство от получил от известного в то время финансиста Дж. П. Моргана, которому он сообщил, что башня будет использоваться для трансатлантической беспроводной телефонии и вещания, на чём Морган планировал заработать. По сути это была первая подобная башня в своём роде.

В 1901 году началось строительство башни и продолжалось до 1903 года. Вторую башню-приёмник планировалось построить около Ниагарского водопада. Когда первую башню в Ворденклифе почти достроили, Морган понял, что беспроводная передача электроэнергии может привести к обрушению всего рынка, в котором он имел вложения (ему принадлежала Ниагарская ГЭС), то он прекратил финансирование проекта Теслы. В мае 1905 года Тесла также потерял свой доход от патентов по истечению срока, поэтому он оказался банкротом и завершить строительство второй башни так и не удалось.

Как устроена башня Теслы

Башня в Ворденклифе представляла из себя огромную катушку Теслы высотой около 60 метров, на верхушки которой была большая медная сфера. Башня генерировала молнии длиной до 40 метров, а гром от высвобождаемой электроэнергии порождал гром, который можно было услышать за 24 километра от башни. Вес башни достигал 55 тонн, а диаметр 21-го метра.

Башня Уорденклифф изнутри

В 1905 году был произведён тестовый пуск, который произвёл шокирующий эффект. В газетах писалось, что Тесла сумел зажечь небо над океаном на тысячи миль. Вокруг же самой башни лошади получали удары током и даже крылья бабочек наэлектризовались до такой степени, что вокруг них можно было видеть «Огни Святого Эльма» (коронный разряд).

К сожалению, башню снесли в 1917-м году.

Изобретение радио и радиоуправления

Тесла демонстрирует свою радиоуправляемую лодку

20-й век крайне богат на различные изобретения и технические новинки. Многие изобретались параллельно в различных вариациях, при этом кто-то патентовал свои изобретения, а кто-то это сделать не мог или не хотел по каким-то причинам. Поэтому достаточно сложно установить, кто же первым изобрёл радио. Так, например, в США считают, что радио изобрели Дэвид Хьюз, Томас Эдисон и Никола Тесла, которые сделали соответствующий технический вклад для этого изобретения; в Германии полагают, что радио изобрёл Генрих Герц, а во Франции - Эдуард Бранли; В Белоруссии в изобретатели радио записывают Якова Наркевича-Иодку; В Бразилии полагают, что изобретателем радио был Ландель де Муру; в Англии - Оливер Джозеф Лоджа; в СССР же общепринятым было считать изобретателем радио Александра Степановича Попова и так далее ещё для многих стран. Гульермо Маркони же следует считать не изобретателем радио, как технологии или законченной системы, а как создателем первой успешной в коммерческом плане реализации системы радио.

Все их патенты и изобретения появлялись в промежутке 1880-1895 годов и все они занимались исследованием радиоволн. Попросту говоря, они все были изобретателями радио в той или иной степени, делая свой вклад в развитие теории передачи информации.

Но что же сделал Тесла? А он сделал тоже не мало. Он описал принципы, по которым можно было передавать радиосигнал на большие расстояния, провёл ряд собственных экспериментов по передаче сигналов, а также создал первую радиоуправляемую лодку, которую продемонстрировал на электротехнической выставке в 1898 году. Правда он не считал, что при помощи радиоволн возможно общение.

Радиоуправляемая лодка Николы Теслы

Одна из страниц патента на радиоуправляемую лодку Николы Тесла

На видео вы можете посмотреть лодку, которую собрали в 2015 году по подобию той, что была у Теслы:

Лодка контролировалась при помощи радиоуправления. Тесла продемонстрировал эту лодку в 1898 году на выставке электротехнике в Мэдисон Сквер Гарден. Там она произвела фурор. Представьте себе людей того времени, которые не понимали, каким образом Тесла управляет лодкой, приказывая ей плыть в то или иное место. Кроме слова «магия» здесь сложно что-то было подобрать для обывателя того времени.

Хотя газетчики того времени сразу начали называть изобретение Теслы «радиоуправляемой торпедой» (видимо, из-за того, что в то время Томас Эдисон пытался изобрести подобную торпеду и продать военным), сам же Тесла не нацеливался на войну. В 1900 году журнал Centure взял интервью у изобретателя, где тот сообщил, что целью его изобретения является попытка создать «искусственный интеллект», так как современные автоматы попросту заимствуют разум человека и откликаются только на его приказы. Тесла полагал, что однажды люди сумеют создать машину со своим собственным разумом. Что же, спустя более чем 100 лет мы пока можем утверждать, что такой машины мы не создали.

Позже во время Второй мировой войны нацисты догадаются использовать радиоуправления для создания дистанционно управляемых танков.

Безлопастная турбина Теслы

Турбина Теслы из музея

Эту турбину Тесла запатентовал в 1913 году. Изобретение турбины без лопастей по сути было вынужденным, так как для изготовления турбины с лопастями не было подходящих технологий, да и аэродинамическая теория ещё не была создана, поэтому Тесла решил использовать эффект пограничного слоя, а не давление вещества на лопатки, как сейчас широко распространено в традиционных турбинах.

Часто можно встретить утверждения, что КПД его турбины может теоретически достигать 95%, но на практике на заводах Вестингауза такая турбина показала КПД в районе 20%. Хотя позже различные модификации турбины другими изобретателями доводили КПД до 40% и более.

Очень хорошо принципы работы турбины Тесла на английском языке объяснены в этом видео:

По состоянию на 2016 год турбина Теслы так и не нашла широкого коммерческого использования с момента своего изобретения. Пока что ей удалось найти узкое применение в насосах. Связано это в первую очередь с тем, что диски внутри турбины сильно деформируются во время работы и это сказывается на общей эффективности применения турбины. Хотя сейчас продолжаются технологические поиски, чтобы решить все возникающие проблемы. Сравнительно недавно вопрос о деформации дисков частично был решён с использованием новых материалов, таких как углеродное волокно.

Клапан Тесла

Данный клапан был изобретён Теслой в 1920 году и почему-то многие даже не слышали об этом интересном изобретении. Суть в том, что этот однонаправленный клапан не имеет подвижных частей . Затор в клапане создаётся за счёт того, что основной поток ветвится и его ответвления направляются обратно, что постепенно замедляет основной поток.

Когда газ или жидкость течёт в прямом направлении, они слегка отклоняют и текут как бы по зигзагу, но не находя большого сопротивления. Можете посмотреть это на видео ниже, где для наглядности в поток добавлены шарики:

Однако, когда поток течёт в обратном направлении, то он ветвится таким образом, что ответвлённый поток направляется против основного, что вызывает сопротивление. И так повторяется на каждом ответвлении, из-за чего поток останавливается. Этот принцип вы можете наблюдать на видео ниже:

Конечно, нужно понимать, что данный клапан не предназначен для того, чтобы быть пробкой для бутылки или что-то в этом роде, так как он плохо работает при низком давлении потока. Однако, стоит начать использовать высокое давление, как соотношение давления между основным и ответвлённым потоком выравниваются.

Тесла изобрёл клапан, когда разрабатывал бесступенчатую турбину. Но так оказалось, что клапан стал самостоятельным изобретением, так как Тесла понял, что турбина лучше взаимодействует с ламинарным потоком, а клапан лучше работает с импульсным.

ПРОДОЛЖЕНИЕ СЛЕДУЕТ …

Противостояние Николы Тесла и Томаса Эдисона в конце 19 века можно было назвать настоящей войной, не зря их соперничество в том, чья технология передачи электрической энергии станет доминирующей в мире, до сих пор называют «Войной токов».

Технология линий переменного тока Тесла или линий постоянного тока Эдисона, - вот воистину эпохальный спор, точка в котором была поставлена лишь в конце 2007 года, с окончательным завершением перехода Нью-Йорка на сети переменного тока, в пользу Тесла.

Первые электрические генераторы, вырабатывающие постоянный ток, допускали простое соединение с линией, и соответственно, с потребителями, в то время как генераторы переменного тока требовали синхронизации с подключаемой энергосистемой.

Немаловажно, что потребителей рассчитанных на переменный ток изначально не существовало, и эффективная модификация асинхронного двигателя, рассчитанного непосредственно на питание переменным током, была изобретена только к 1888 году, то есть спустя шесть лет после запуска Эдисоном первой электростанции постоянного тока в Лондоне.


После патентования Эдисоном в 1880 году своей системы производства и распространения электрической энергии постоянного тока, включающей три провода – нулевой, плюс 110 вольт, и минус 110 вольт, великий изобретатель лампочки был уже уверен в том, что «сделает электрическое освещение настолько дешевым, что лишь богачи будут использовать свечи».

Так, как уже было сказано выше, первая электростанция постоянного тока была запущена Эдисоном в январе 1882 года в Лондоне, через несколько месяцев – на Манхэттене, и к 1887 году в Соединенных Штатах работало уже более сотни электростанций постоянного тока Эдисона. В это время Тесла работал у Эдисона.

Несмотря на кажущееся безоблачное будущее систем постоянного тока Эдисона, был у них весьма значительный недостаток. Для передачи электрической энергии на расстояние применялись провода, а с увеличением длины провода, как известно, растет его сопротивление, и следовательно, имеют место неизбежные потери на нагрев. Таким образом, проблема требовала решения, - снижать сопротивление проводов, делая их толще, либо поднимать напряжение, дабы уменьшить силу тока.

Эффективных методов повышения напряжения постоянного тока на тот момент не существовало, и напряжение в линиях по прежнему не превышало 200 вольт, поэтому предать сколько-нибудь значительную мощность получалось лишь на расстояние не более 1,5 км, а если нужно передать электроэнергию дальше – налицо дороговизна проводов большого сечения.

И вот, в 1893 году Никола Тесла и его инвестор, предприниматель Джордж Вестингауз, получили заказ на освещение ярмарки в Чикаго двумя сотнями тысяч электрических лампочек. Это была победа. Три года спустя, была построена первая гидроэлектростанция переменного тока на Ниагарском водопаде для передачи электрической энергии в город Буффало, располагавшийся неподалеку.

В прочем, к 1928 году в США уже перестали развивать системы постоянного тока, полностью убедившись в преимуществах переменного тока. Еще через 70 лет был начат их демонтаж, к 1998 году в Нью-Йорке количество потребителей постоянного тока не превышало 4600, а к 2007 году не осталось ни одного, когда главный инженер «Консолидейтед Эдисон» символически перерезал кабель, и «Война токов» была окончена.


Переход на переменный ток сильно ударил Эдисону по карману, и, чувствуя свое поражение, он начал подавать в суд за нарушения его патентных прав, однако решения судей не были в его пользу. Эдисон не останавливался, он стал устраивать публичные демонстрации, где убивал животных переменным током, пытаясь убедить всех и вся в опасности использования переменного тока, и наоборот – в безопасности его сетей постоянного тока.

В конце концов, дошло до того, что в 1887 году партнер Эдисона, инженер Гарольд Браун предложил казнить преступников посредством смертельно опасного переменного тока. Вестингауз и Тесла не стали поставлять для этого генераторы, и даже наняли адвоката приговоренному к казни на электрическом стуле убийце своей жены Кеммлеру. Но это не спасло, и в 1890 году Кеммлер был казнен переменным током, а Эдисон позаботился о том, чтобы подкупленный журналист облил за это Вестингауза грязью в своей газете.

Несмотря на продолжительный черный пиар со стороны Эдисона, система переменного тока Тесла была обречена на успех. Напряжение переменного тока легко и эффективно можно было повышать посредством трансформаторов, и передавать по проводам на расстояния в сотни километров без особых потерь. Высоковольтные линии не требовали использования толстых проводов, и понижение напряжения на трансформаторных подстанциях позволяло предавать потребителю низкое напряжение для питания нагрузок переменным током.

Началось с того, что в 1885 году Тесла уволился от Эдисона, и вместе с Вестингаузом приобрел несколько трансформаторов компании Голар-Гиббс, и генератор переменного тока производства Siemens & Halske, после чего, при поддержке Вестингауза начал собственные эксперименты. В результате, спустя год после начала экспериментов, в Грейт-Баррингтон, штат Массачусетс, начала работу первая ГЭС переменного тока на 500 вольт.

Тогда еще не было моторов подходящих для эффективного питания переменным током, а уже в 1882 году Тесла изобрел многофазный электромотор, патент на который он получил в 1888 году, в этом же году появляется и первый счетчик переменного тока. Трехфазная система была представлена во Франкфурте-на-Майне, на выставке в 1891 году, и в 1893 году Вестингауз выиграл тендер на постройку электростанции на Ниагарском водопаде. Тесла считал, что энергии этой ГЭС хватит на все Соединенные Штаты.


Для примирения Тесла и Эдисона, Ниагарская Энергетическая Компания поручила Эдисону строительство линии электропередачи от станции на Ниагарском водопаде до города Буффало. В итоге, принадлежащая Эдисону компания «General Electric» купила компанию «Томсон-Хьюстон», изготавливавшую машины переменного тока, и сама начала их производство.

Так, Эдисон снова стал при деньгах, однако черный пиар против переменного тока не прекратил, - он предал огласке и растиражировал по газетам снимки казни переменным током слонихи Топси, которая затоптала в 1903 году троих работников цирка нью-йоркского Луна-парка.

Постоянный и переменный ток - достоинства и недостатки

Постоянный ток, так сложилось исторически, нашел широкое применение для питания электродвигателей с последовательным возбуждением на транспорте. Такие двигатели хороши тем, что развивают большой крутящий момент при небольшом числе оборотов в минуту, и это число оборотов можно легко регулировать, просто меняя постоянное напряжение, подаваемое на обмотку возбуждения двигателя, или посредством реостата.

Электродвигатели постоянного тока способны почти мгновенно менять направление своего вращения при смене полярности питания на обмотке возбуждения. Так, двигатели постоянного тока по сей день широко применяются на тепловозах, электровозах, трамваях, троллейбусах, на различных подъемниках и подъемных кранах.

Постоянным током можно без проблем питать лампы накаливания, различные приборы для осуществления промышленного электролиза, гальванопластики, сварки, также его успешно используют для питания сложного медицинского оборудования.

Безусловно, постоянный ток полезен в электротехнике, ведь соответствующие цепи легко рассчитываются и просто управляются, не зря к 1887 году в Соединенных Штатах насчитывалось более ста электростанций постоянного тока, работу над которыми возглавляла компания Томаса Алва Эдисона. Ясно, что постоянный ток удобен в случае, когда нет необходимости в преобразовании, т.е. повышении или понижении напряжения, это и есть главный недостаток постоянного тока.

Несмотря на усилия Эдисона по внедрению систем передачи постоянного тока, был у таких систем и значительный минус – необходимость использования большого количества материалов и существенные потери при передаче.

Дело в том, что напряжение в первых линиях постоянного тока не превышало 200 вольт, и передавать электричество можно было на расстояние, не превышающее 1,5 км от электростанции, при этом много энергии рассеивалось при передаче (вспомните ).

Если все же требовалось передать большую мощность на большее расстояние, приходилось применять толстые тяжелые провода, а это выходило очень дорого.

В 1893 году Никола Тесла начал внедрение своих систем переменного тока, которые показали высокую эффективность благодаря самой сути переменного тока. Переменный ток можно было легко преобразовывать посредством трансформаторов, повышая напряжение, и тогда стала возможной передача электрической энергии на многие километры с минимальными потерями.

Так происходит потому, что при подаче одной и той же мощности через провода силу тока удается снизить благодаря повышению напряжения, поэтому и потери при передаче меньше, и необходимое сечение проводов, соответственно, уменьшается. Именно поэтому сети переменного тока стали внедряться по всему миру.

Переменным током питаются асинхронные двигатели в машинах и станках, индукционные печи, им также можно питать и простые лампы накаливания, и любую другую активную нагрузку. Асинхронные двигатели и трансформаторы произвели настоящую революцию в электротехнике именно благодаря переменному току.

Если же для какой-нибудь цели необходим непосредственно постоянный ток, например для зарядки аккумуляторов, то теперь его всегда можно получить из переменного при помощи выпрямителей.

Почти весь XIX век в практических применениях безраздельно господствовал постоянный ток. Главным препятствием широкой электрификации в то время была невозможность передачи электроэнергии на большие расстояния, а переходу на переменные токи мешало отсутствие эффективных электродвигателей переменного тока. Решение было найдено в новаторских работах гениального электротехника Николы Тесла.

Причин популярности постоянного тока тогда было несколько. Прежде всего, источниками тока служили гальванические батареи, и все производимые генераторы и моторы также были постоянного тока. Инженеры мыслили электрогидравлическими аналогиями, в которые не укладывалась идея потоков, меняющих свое направление, поэтому, например, приверженность Эдисона постоянным токам казалась вполне оправданной. Между тем недостатки устройств постоянного тока становились все более очевидными в связи с плохой работой коллектора электрических машин (искрением и износом), проблемами освещения и, главное, невозможностью передачи электроэнергии на большие расстояния.

Электрическое освещение стали использовать после появления дуговых ламп, среди которых наиболее простой была свеча Яблочкова в виде двух вертикально расположенных угольных электродов, разделенных слоем изолирующего материала . Вскоре выяснилось, что на постоянном токе разнополярные электроды сгорают неодинаково, поэтому Яблочков предложил питать свечи переменным током, для чего совместно с известным французским заводом Грамма разработал специальный генератор переменного тока, конструкция которого оказалась столь удачной, что его производство доходило до 1000 штук в год . Другое важное изобретение Яблочкова - это схема «дробления света» с использованием индукционной катушки (прообраза современного трансформатора) для параллельного питания от одного генератора любого числа свечей, подобно газовому освещению.

Однако эксплуатация выявила серьезные недостатки дугового освещения, особенно в быту: необходимость замены свечей через каждые два часа, шум, мерцание, большая дороговизна по сравнению даже с газом. Поэтому уже с начала 1890-х гг. электрические свечи были почти повсеместно вытеснены лампами накаливания Эдисона и применялись только в прожекторах или для больших пространств. Тем не менее, именно Яблочкову мы обязаны введением переменных токов в практическую электротехнику, что, в конечном счете, привело к решению острой проблемы дальней передачи электроэнергии, называемой тогда проблемой «распределения света».

Освещение по системе Эдисона имело низкое напряжение, 110 В, поэтому в каждом районе требовалось строить свою электростанцию. Например, в Петербурге из-за дороговизны земли такие электростанции ставились на баржах, стоящих в реках Мойке и Фонтанке . Было ясно, что крупные генерирующие станции выгоднее строить вблизи рек и угольных бассейнов, вдали от городов. Но тогда для дальней передачи нужно или увеличивать сечение подводящих проводов, или повышать напряжение. Для проверки первого подхода на практике русский изобретатель Федор Апполонович Пироцкий предлагал использовать железнодорожные рельсы. Второй путь (повышение напряжения) был испробован французским инженером, впоследствии академиком Марселем Депре (Marcel Deprez), построившим несколько линий передачи постоянного тока с напряжением до 6 кВ. Первая из них, с напряжением 2 кВ, имела длину 57 км и питала двигатель постоянного тока с насосом для искусственного водопада на Мюнхенской электротехнической выставке 1882 г. . Однако для систем освещения такое высокое напряжение было непригодно.

Более простое решение - переход на однофазный переменный ток с повышающими и понижающими трансформаторами - было предложено известной компанией «Ганц и Ко» из Будапешта для освещения оперных театров в Будапеште, Вене и Одессе . Талантливые инженеры этой компании, Микша Дери (Miksa Dèri), Отто Блати (Otto Blathy) и Карой Циперновски (Karoly Zipernowsky), создали в 1884 г. наиболее совершенные конструкции трансформатора (и они же придумали сам этот термин). Отто Блати также изобрел первый электрический счетчик электроэнергии и прославился как выдающийся шахматист.

Однако развитие промышленности требовало мощных приводов, которые не могли быть созданы на базе электродвигателей переменного тока с питанием от однофазной осветительной сети. Эта проблема формулировалась как «электрическая передача механической энергии» или «передача силы». Одно из ее первых решений было предложено Депре в 1879 г. в виде дистанционной передачи в опытный вагон движения поршней паровой машины (рис. 1) .

У нее был датчик в виде щеточного коммутатора (1) и приемник (2), содержащий ротор (3) с двумя взаимно перпендикулярными катушками, который в свою очередь был подключен к коммутатору (4) и находился в поле магнита (5). Устройство работало со скоростью до 3000 об/мин и с моментом до 5 Нм. Эта идея позднее получила свое развитие в виде сельсинных передач и шаговых двигателей, однако подходила для использования только в приборных системах.

Решение этой проблемы в целом пришло из-за океана, где появился деятельный человек, интуитивно осознавший грядущий переход на переменный ток. Это был Джордж Вестингауз (George Westinghouse) (рис. 2) - видный американский промышленник в сфере оборудования железных дорог, основатель компании Westinghouse, решивший заняться еще и электротехническим бизнесом .

Для того чтобы выйти на рынок со своей продукцией, ему нужны были новые патенты, поскольку основные патенты в этой области принадлежали Эдисону, Вернеру Сименсу (Verner Siemens) и другим конкурентам. Перевести освещение на переменный ток было сравнительно просто, и Вестингауз легко вышел на этот рынок, закупив европейские генераторы и трансформаторы и запатентовав ряд своих ламп накаливания. В 1893 г. он получи большой подряд на электрификацию Всемирной выставки в Чикаго, установив там 180 тыс. ламп накаливания и тысячи дуговых ламп .Однако электрические машины были совсем другим делом, поэтому для их разработки он подыскал через патентное ведомство никому не известного изобретателя Николу Теслу, имевшего десятки патентов на системы переменного тока. На встрече в Нью-Йорке в 1888 г. Вестингауз предложил Тесле уступить ему все уже полученные и будущие патенты в обмен на один миллион долларов, пост технического руководителя завода в Питтсбурге и один доллар за каждую л. с. двигателей и генераторов по системе Теслы, установленных на территории США в течение ближайших 15 лет. Третье условие соглашения сыграло в дальнейшем важную роль. Тесла все эти условия принял, и так началось его плодо­творное сотрудничество с Вестингаузом .
Будущий великий электротехник Никола Тесла (рис. 3) родился в семье сербского священника, жившей в Хорватии. Учился в Градском политехникуме и Пражском университете, но, не закончив их, поступил на работу в отделение компании Эдисона в Париже, откуда перебрался в США с рекомендательным письмом от директора отделения самому Эдисону.

Письмо гласило: «Я знаю двух великих людей: один из них вы, а второй - молодой человек, которого я вам рекомендую». Разумеется, Тесла был принят незамедлительно, и ему поручили самую ответственную работу с электротехническим оборудованием, включая ликвидацию аварий.

Впрочем, работа в этой компании продолжалась недолго. Поводом к расставанию якобы послужил отказ Эдисона выплатить обещанную премию в 50 тысяч долларов за совершенствование генераторов постоянного тока. Когда Тесла напомнил об этом шефу, тот сказал: «Молодой человек, вы не понимаете американского юмора» . Однако скорее всего причиной ухода Теслы было упорное нежелание Эдисона разрешать молодому сербу заниматься бесколлекторным электродвигателем переменного тока, с мечтой о котором Тесла прибыл из Европы. Поэтому, разумеется, Тесла с радостью принял предложение Вестингауза, которое предоставляло ему прекрасные возможности для работы над своей идеей.

Еще в мае 1888 г. Тесла получил семь патентов США на системы переменного тока и бесщеточные двигатели . Главным в них было новаторское предложение строить всю цепочку генерации, передачи, распределения и использования электроэнергии как многофазную систему переменного тока, включающую генератор, линию передачи и двигатель переменного тока, названный Теслой «индукционным». Пример такой системы показан на рис. 4.

Здесь: 1 - синхронный генератор с возбуждением от постоянных магнитов и с двумя взаимно перпендикулярными фазами обмотки ротора (2), соединенными через контактные кольца (3) и линию передачи (4) с двухфазным индукционным двигателем (5) с обмоткой статора (6) и ротором (7) в виде стального цилиндра со срезанными сегментами . Действие такого двигателя, называемого теперь асинхронным, объяснялось формированием «перемещающегося», а по современной терминологии вращающегося магнитного поля. Для линии дальней передачи предлагалось включение двухфазных повышающего и понижающего трансформаторов. В мае того же года Тесла выступил с большим докладом о многофазных системах на семинаре Американского института инженеров-электриков AIEE (предшественника IEEE). Продолжая исследования, он вскоре реализовал и другие идеи: двухфазный и трехфазный асинхронный двигатель с обмоткой в звезду, трехфазный генератор с нейтралью и без, трех- и четырехпроводные линии электропередачи и т. д. Всего по многофазным системам у Теслы был 41 патент .

Несомненно,Тесле принадлежит патентный, а Вестингаузу промышленный приоритет на многофазные системы переменного тока, поскольку им сразу же было развернуто массовое производство двигателей, генераторов и другой аппаратуры таких систем. Вершиной этой бурной деятельности было строительство в 1895 г. самой крупной по тем временам Ниагарской электростанции на американском берегу Ниагарского водопада, высота которого составляла 48 метров. На плотине было установлено 10 двухфазных генераторов по 3,7 мВт каждый, а также проложена линия электропередачи 11 кВ длиной 40 км в Буффало, где был создан промышленный район с многочисленными потребителями электроэнергии переменного тока .

Однако Теслу тяготила производственная деятельность, и он ушел от Вестингауза, желая и дальше развивать идею дальней передачи электроэнергии, но уже без проводов. Этим он и стал с увлечением заниматься в собственной лаборатории.Его первой мыслью было создать с помощью высоковольтного и высокочастотного излучателя мощное электрическое поле, действующее на значительные расстояния, из которого потребитель мог бы черпать электроэнергию. Тесла изобретает первый электромеханический СВЧ-генератор, использованный позднее в первых радиостанциях и для индукционного нагрева, передающую и приемную антенны, а также резонансный контур приемника для выделения определенной частоты. Всех поразил опыт Теслы, когда при включении генератора безо всяких проводов в его руках загоралась электрическая лампа, как показано на рис. 5.

Тесла был в одном шаге от изобретения радио, но не пошел по этому пути, поскольку его занимала мысль о передаче электроэнергии, а не информации. Однако именно ему принадлежит приоритет в создании телемеханики, реализованной в 1898 г. в виде дистанционно управляемого водяного катера.

Тем временем, многочисленные опыты показывали, что электролампу удается зажигать только на расстоянии не более нескольких сотен метров. Тесла попытался реализовать другой способ передачи электро­энергии: не через атмосферу, а прямо сквозь землю путем возбуждения в земном шаре, как огромном конденсаторе, поверхностных стоячих волн, в пучности которых можно было отбирать энергию в любой точке поверхности Земли. Для этого он построил в местечке Уорденклиф под Нью-Йорком огромную антенну с мощным надземным и подземным возбудителями, подключенными к отдельной электростанции, как показано на рис. 6. Опыты с этой башней по беспроводной передаче электроэнергии в период с 1899 по 1905 г., судя по всему, не дали желаемого эффекта, поскольку Тесла их неожиданно забросил, не опубликовав результатов. И ученые до сих пор спорят, чего же все-таки достиг Тесла в этом эксперименте, поскольку он работал без помощников и не оставил никаких записей .

Задача беспроводной передачи электроэнергии не решена до сих пор. Последние достижения используют узконаправленные микроволновое или лазерное излучения для удаленного электропитания космических аппаратов от спутника с солнечными батареями или от управляемых дронов . Экспериментально доказана возможность передачи порядка десятка киловатт на расстояние километров. Другое направление разработок - это лазерное оружие, предвозвестником которого был знаменитый «Гиперболоид инженера Гарина».
Тем не менее заслуги Теслы были всемирно признаны. В честь него единица индукции магнитного поля в системе SI названа «тесла», он был избран членом и почетным доктором наук многих академий и университетов. Одна из самых престижных наград IEEE - медаль Теслы - ежегодно присуждается за выдающиеся заслуги в области производства и использования электроэнергии. Тесле принадлежит около 800 патентов, причем, в отличие от патентов Эдисона, они считаются более новаторскими. Существует несколько памятников Тесле и посвященных ему музеев, среди которых самый впечатляющий находится в Белграде, выпущены банкноты с его портретом (рис. 7).

Однако личная жизнь Теслы сложилась неудачно . В конце XIX в. в США разразился экономический кризис, поставивший компанию Вестингауза на грань разорения. Узнав об этом, Тесла явился в штаб-квартиру своего бывшего патрона и публично разорвал их первичное соглашение, потеряв около 10 млн долларов, причитавшихся ему в соответствии с третьим пунктом этого договора. Буквально через две недели после этого великодушного жеста дотла сгорела его великолепная лаборатория, и он остался без средств. В отличие от Эдисона, он не был бизнесменом и вложил все, что у него имелось, в эту лабораторию. После этого Тесла был вынужден проводить свои дальнейшие исследования на различные гранты и пожертвования, в частности, башня Уорденклифф была построена на деньги американского финансиста Моргана.

Биограф Теслы Велимир Абрамович писал: «Пытаясь представить себе Теслу, я не вижу его улыбающимся, а наоборот, грустным…» . Тесла не пил вина, никогда не знал женщин, не имел семьи и умер в одиночестве и бедности в отеле «Нью-Йоркер» .

Потребность в передаче электроэнергии на большие расстояния возникла в конце XIX в., прежде всего в связи с широким внедрением систем освещения.

  • Такая передача на постоянном токе была технически целесообразной только при высоком напряжении и практически неприемлемой для низковольтного освещения.

  • Линии передачи переменного тока с трансформаторами удовлетворяли задачам освещения, однако для промышленности требовались мощные электродвигатели, все известные конструкции которых были постоянного тока.

  • Решение этой комплексной проблемы было предложено изобретателем Теслой и предпринимателем Вестингаузом, создавшими многофазные системы переменного тока с синхронными генераторами, линиями передачи и асинхронными двигателями.

  • Исследования же Теслы по беспроводной передаче электроэнергии до сих пор не получили практического завершения.



Что еще почитать