Вероятность случайного события примеры. Классическое определение вероятности случайного события. Теория вероятностей. коротко о главном

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, которое тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определением вероятности следует считать классическое, которое возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

Поэтому об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, которое может произойти при осуществлении эксперимента, случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С - случаи А 3 , А 6 .

Классической вероятностью появления некоторого события называется отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) - вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) = , Р(С) = .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m = 9, n = 9 + 6 = 15, P(A) =

B - вынутые наугад два шара красные:

Из классического определения вероятности вытекают следующие свойства (показать самостоятельно):


1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Кроме того, слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. Однако такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определением вероятности пользуются и другими определениями вероятности.

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях:

где - вероятность появления события А;

Относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример : Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

Статистический способ определения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

Фактически формулы (1) и (2) это краткая запись условной вероятности на основе таблицы сопряженности признаков. Вернемся к примеру, рассмотренному (рис. 1). Предположим, что нам стало известно, будто некая семья собирается купить широкоэкранный телевизор. Какова вероятность того, что эта семья действительно купит такой телевизор?

Рис. 1. Поведение покупателей широкоэкранных телевизоров

В данном случае нам необходимо вычислить условную вероятность Р (покупка совершена | покупка планировалась). Поскольку нам известно, что семья планирует покупку, выборочное пространство состоит не из всех 1000 семей, а только из тех, которые планируют покупку широкоэкранного телевизора. Из 250 таких семей 200 действительно купили этот телевизор. Следовательно, вероятность того, что семья действительно купит широкоэкранный телевизор, если она это запланировала, можно вычислить по следующей формуле:

Р (покупка совершена | покупка планировалась) = количество семей, планировавших и купивших широкоэкранный телевизор / количество семей, планировавших купить широкоэкранный телевизор = 200 / 250 = 0,8

Этот же результат дает формула (2):

где событие А заключается в том, что семья планирует покупку широкоформатного телевизора, а событие В - в том, что она его действительно купит. Подставляя в формулу реальные данные, получаем:

Дерево решений

На рис. 1 семьи разделены на четыре категории: планировавшие покупку широкоэкранного телевизора и не планировавшие, а также купившие такой телевизор и не купившие. Аналогичную классификацию можно выполнить с помощью дерева решений (рис. 2). Дерево, изображенное на рис. 2, имеет две ветви, соответствующие семьям, которые планировали приобрести широкоэкранный телевизор, и семьям, которые не делали этого. Каждая из этих ветвей разделяется на две дополнительные ветви, соответствующие семьям, купившим и не купившим широкоэкранный телевизор. Вероятности, записанные на концах двух основных ветвей, являются безусловными вероятностями событий А и А’ . Вероятности, записанные на концах четырех дополнительных ветвей, являются условными вероятностями каждой комбинации событий А и В . Условные вероятности вычисляются путем деления совместной вероятности событий на соответствующую безусловную вероятность каждого из них.

Рис. 2. Дерево решений

Например, чтобы вычислить вероятность того, что семья купит широкоэкранный телевизор, если она запланировала сделать это, следует определить вероятность события покупка запланирована и совершена , а затем поделить его на вероятность события покупка запланирована . Перемещаясь по дереву решения, изображенному на рис. 2, получаем следующий (аналогичный предыдущему) ответ:

Статистическая независимость

В примере с покупкой широкоэкранного телевизора вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор при условии, что она планировала это сделать, равна 200/250 = 0,8. Напомним, что безусловная вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор, равна 300/1000 = 0,3. Отсюда следует очень важный вывод. Априорная информация о том, что семья планировала покупку, влияет на вероятность самой покупки. Иначе говоря, эти два события зависят друг от друга. В противоположность этому примеру, существуют статистически независимые события, вероятности которых не зависят друг от друга. Статистическая независимость выражается тождеством: Р(А|В) = Р(А) , где Р(А|В) - вероятность события А при условии, что произошло событие В , Р(А) - безусловная вероятность события А.

Обратите внимание на то, что события А и В Р(А|В) = Р(А) . Если в таблице сопряженности признаков, имеющей размер 2×2, это условие выполняется хотя бы для одной комбинации событий А и В , оно будет справедливым и для любой другой комбинации. В нашем примере события покупка запланирована и покупка совершена не являются статистически независимыми, поскольку информация об одном событии влияет на вероятность другого.

Рассмотрим пример, в котором показано, как проверить статистическую независимость двух событий. Спросим у 300 семей, купивших широкоформатный телевизор, довольны ли они своей покупкой (рис. 3). Определите, связаны ли между собой степень удовлетворенности покупкой и тип телевизора.

Рис. 3. Данные, характеризующие степень удовлетворенности покупателей широкоэкранных телевизоров

Судя по этим данным,

В то же время,

Р (покупатель удовлетворен) = 240 / 300 = 0,80

Следовательно, вероятность того, что покупатель удовлетворен покупкой, и того, что семья купила HDTV-телевизор, равны между собой, и эти события являются статистически независимыми, поскольку никак не связаны между собой.

Правило умножения вероятностей

Формула для вычисления условной вероятности позволяет определить вероятность совместного события А и В . Разрешив формулу (1)

относительно совместной вероятности Р(А и В) , получаем общее, правило умножения вероятностей. Вероятность события А и В равна вероятности события А при условии, что наступило событие В В :

(3) Р(А и В) = Р(А|В) * Р(В)

Рассмотрим в качестве примера 80 семей, купивших широкоэкранный HDTV-телевизор (рис. 3). В таблице указано, что 64 семьи удовлетворены покупкой и 16 - нет. Предположим, что среди них случайным образом выбираются две семьи. Определите вероятность, что оба покупателя окажутся довольными. Используя формулу (3), получаем:

Р(А и В) = Р(А|В) * Р(В)

где событие А заключается в том, что вторая семья удовлетворена своей покупкой, а событие В - в том, что первая семья удовлетворена своей покупкой. Вероятность того, что первая семья удовлетворена своей покупкой, равна 64/80. Однако вероятность того, что вторая семья также удовлетворена своей покупкой, зависит от ответа первой семьи. Если первая семья после опроса не возвращается в выборку (выбор без возвращения), количество респондентов снижается до 79. Если первая семья оказалась удовлетворенной своей покупкой, вероятность того, что вторая семья также будет довольна, равна 63/79, поскольку в выборке осталось только 63 семьи, удовлетворенные своим приобретением. Таким образом, подставляя в формулу (3) конкретные данные, получим следующий ответ:

Р(А и В) = (63/79)(64/80) = 0,638.

Следовательно, вероятность того, что обе семьи довольны своими покупками, равна 63,8%.

Предположим, что после опроса первая семья возвращается в выборку. Определите вероятность того, что обе семьи окажутся довольными своей покупкой. В этом случае вероятности того, что обе семьи удовлетворены своей покупкой одинаковы, и равны 64/80. Следовательно, Р(А и В) = (64/80)(64/80) = 0,64. Таким образом, вероятность того, что обе семьи довольны своими покупками, равна 64,0%. Этот пример показывает, что выбор второй семьи не зависит от выбора первой. Таким образом, заменяя в формуле (3) условную вероятность Р(А|В) вероятностью Р(А) , мы получаем формулу умножения вероятностей независимых событий.

Правило умножения вероятностей независимых событий. Если события А и В являются статистически независимыми, вероятность события А и В равна вероятности события А , умноженной на вероятность события В .

(4) Р(А и В) = Р(А)Р(В)

Если это правило выполняется для событий А и В , значит, они являются статистически независимыми. Таким образом, существуют два способа определить статистическую независимость двух событий:

  1. События А и В являются статистически независимыми друг от друга тогда и только тогда, когда Р(А|В) = Р(А) .
  2. События А и B являются статистически независимыми друг от друга тогда и только тогда, когда Р(А и В) = Р(А)Р(В) .

Если в таблице сопряженности признаков, имеющей размер 2×2, одно из этих условий выполняется хотя бы для одной комбинации событий А и B , оно будет справедливым и для любой другой комбинации.

Безусловная вероятность элементарного события

(5) Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2) + … + P(A|B k)Р(B k)

где события B 1 , B 2 , … B k являются взаимоисключающими и исчерпывающими.

Проиллюстрируем применение этой формулы на примере рис.1. Используя формулу (5), получаем:

Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2)

где Р(А) - вероятность того, что покупка планировалась, Р(В 1) - вероятность того, что покупка совершена, Р(В 2) - вероятность того, что покупка не совершена.

ТЕОРЕМА БАЙЕСА

Условная вероятность события учитывает информацию о том, что произошло некое другое событие. Этот подход можно использовать как для уточнения вероятности с учетом вновь поступившей информации, так и для вычисления вероятности, что наблюдаемый эффект является следствием некоей конкретной причины. Процедура уточнения этих вероятностей называется теоремой Байеса. Впервые она была разработана Томасом Байесом в 18 веке.

Предположим, что компания, упомянутая выше, исследует рынок сбыта новой модели телевизора. В прошлом 40% телевизоров, созданных компанией, пользовались успехом, а 60% моделей признания не получили. Прежде чем объявить о выпуске новой модели, специалисты по маркетингу тщательно исследуют рынок и фиксируют спрос. В прошлом успех 80% моделей, получивших признание, прогнозировался заранее, в то же время 30% благоприятных прогнозов оказались неверными. Для новой модели отдел маркетинга дал благоприятный прогноз. Какова вероятность того, что новая модель телевизора будет пользоваться спросом?

Теорему Байеса можно вывести из определений условной вероятности (1) и (2). Чтобы вычислить вероятность Р(В|А), возьмем формулу (2):

и подставим вместо Р(А и В) значение из формулы (3):

Р(А и В) = Р(А|В) * Р(В)

Подставляя вместо Р(А) формулу (5), получаем теорему Байеса:

где события B 1 , В 2 , … В k являются взаимоисключающими и исчерпывающими.

Введем следующие обозначения: событие S - телевизор пользуется спросом , событие S’ - телевизор не пользуется спросом , событие F - благоприятный прогноз , событие F’ - неблагоприятный прогноз . Допустим, что P(S) = 0,4, P(S’) = 0,6, P(F|S) = 0,8, P(F|S’) = 0,3. Применяя теорему Байеса получаем:

Вероятность спроса на новую модель телевизора при условии благоприятного прогноза равна 0,64. Таким образом, вероятность отсутствия спроса при условии благоприятного прогноза равна 1–0,64=0,36. Процесс вычислений представлен на рис. 4.

Рис. 4. (а) Вычисления по формуле Байеса для оценки вероятности спроса телевизоров; (б) Дерево решения при исследовании спроса на новую модель телевизора

Рассмотрим пример применения теоремы Байеса для медицинской диагностики. Вероятность того, что человек страдает от определенного заболевания, равна 0,03. Медицинский тест позволяет проверить, так ли это. Если человек действительно болен, вероятность точного диагноза (утверждающего, что человек болен, когда он действительно болен) равна 0,9. Если человек здоров, вероятность ложноположительного диагноза (утверждающего, что человек болен, когда он здоров) равна 0,02. Допустим, что медицинский тест дал положительный результат. Какова вероятность того, что человек действительно болен? Какова вероятность точного диагноза?

Введем следующие обозначения: событие D - человек болен , событие D’ - человек здоров , событие Т - диагноз положительный , событие Т’ - диагноз отрицательный . Из условия задачи следует, что Р(D) = 0,03, P(D’) = 0,97, Р(T|D) = 0,90, P(T|D’) = 0,02. Применяя формулу (6), получаем:

Вероятность того, что при положительном диагнозе человек действительно болен, равна 0,582 (см. также рис. 5). Обратите внимание на то, что знаменатель формулы Байеса равен вероятности положительного диагноза, т.е. 0,0464.

Глава I . СЛУЧАЙНЫЕ СОБЫТИЯ. ВЕРОЯТНОСТЬ

1.1. Закономерность и случайность, случайная изменчивость в точных науках, в биологии и медицине

Теория вероятностей – область математики, изучающая закономерности в случайных явлениях. Случайное явление – это явление, которое при неоднократном воспроизведении одного и того же опыта может протекать каждый раз несколько по-иному.

Очевидно, что в природе нет ни одного явления, в котором не присутствовали бы в той или иной мере элементы случайности, но в различных ситуациях мы учитываем их по-разному. Так, в ряде практических задач ими можно пренебречь и рассматривать вместо реального явления его упрощенную схему – «модель», предполагая, что в данных условиях опыта явление протекает вполне определенным образом. При этом выделяются самые главные, решающие факторы, характеризующие явление. Именно такая схема изучения явлений чаще всего применяется в физике, технике, механике; именно так выявляется основная закономерность, свойственная данному явлению и дающая возможность предсказать результат опыта по заданным исходным условиям. А влияние случайных, второстепенных, факторов на результат опыта учитывается здесь случайными ошибками измерений (методику их расчета рассмотрим далее).

Однако описанная классическая схема так называемых точных наук плохо приспособлена для решения многих задач, в которых многочисленные, тесно переплетающиеся между собой случайные факторы играют заметную (часто определяющую) роль. Здесь на первый план выступает случайная природа явления, которой уже нельзя пренебречь. Это явление необходимо изучать именно с точки зрения закономерностей, присущих ему как случайному явлению. В физике примерами таких явлений являются броуновское движение, радиоактивный распад, ряд квантово-механических процессов и др.


Предмет изучения биологов и медиков – живой организм, зарождение, развитие и существование которого определяется очень многими и разнообразными, часто случайными внешними и внутренними факторами. Именно поэтому явления и события живого мира во многом тоже случайны по своей природе.

Элементы неопределенности, сложности, многопричинности, присущие случайным явлениям, обусловливают необходимость создания специальных математических методов для изучения этих явлений. Разработка таких методов, установление специфических закономерностей, свойственных случайным явлениям, –главные задачи теории вероятностей. Характерно, что эти закономерности выполняются лишь при массовости случайных явлений. Причем индивидуальные особенности отдельных случаев как бы взаимно погашаются, а усредненный результат для массы случайных явлений оказывается уже не случайным, а вполне закономерным. В значительной мере данное обстоятельство явилось причиной широкого распространения вероятностных методов исследования в биологии и медицине.

Рассмотрим основные понятия теории вероятностей.

1.2. Вероятность случайного события

Каждая наука, развивающая общую теорию какого-либо круга явлений, базируется на ряде основных понятий. Например, в геометрии – это понятия точки, прямой линии; в механике – понятия силы, массы, скорости и т. д. Основные понятия существуют и в теории вероятностей, одно из них – случайное событие.

Случайное событие – это всякое явление (факт), которое в результате опыта (испытания) может произойти или не произойти.

Случайные события обозначаются буквами А, В, С … и т. д. Приведем несколько примеров случайных событий:

А –выпадение орла (герба) при подбрасывании стандартной монеты;

В – рождение девочки в данной семье;

С – рождение ребенка с заранее заданной массой тела;

D – возникновение эпидемического заболевания в данном регионе в определенный период времени и т. д.

Основной количественной характеристикой случайного события является его вероятность. Пусть А – какое-то случайное событие. Вероятность случайного события А – это математическая величина, которая определяет возможность его появления. Она обозначается Р (А ).

Рассмотрим два основных метода определения данной величины.

Классическое определение вероятности случайного события обычно базируется на результатах анализа умозрительных опытов (испытаний), суть которых определяется условием поставленной задачи. При этом вероятность случайного события Р(А) равна:

где m – число случаев, благоприятствующих появлению события А ; n – общее число равновозможных случаев.

Пример 1. Лабораторная крыса помещена в лабиринт, в котором лишь один из четырех возможных путей ведет к поощрению в виде пищи. Определите вероятность выбора крысой такого пути.

Решение : по условию задачи из четырех равновозможных случаев (n =4) событию А (крыса находит пищу)
благоприятствует только один, т. е. m = 1 Тогда Р (А ) = Р (крыса находит пищу) = = 0,25= 25%.

Пример 2. В урне 20 черных и 80 белых шаров. Из нее наугад вынимается один шар. Определите вероятность того, что этот шар будет черным.


Решение : количество всех шаров в урне – это общее число равновозможных случаев n , т. е. n = 20 + 80 = 100, из них событие А (извлечение черного шара) возможно лишь в 20, т. е. m = 20. Тогда Р (А ) = Р (ч. ш.) = = 0,2 = 20%.

Перечислим свойства вероятности следующие из ее классического определения – формула (1):

1. Вероятность случайного события – величина безразмерная.

2. Вероятность случайного события всегда положительна и меньше единицы, т. е. 0 < P (A ) < 1.

3. Вероятность достоверного события, т. е. события, которое в результате опыта обязательно произойдет (m = n ), равна единице.

4. Вероятность невозможного события (m = 0) равна нулю.

5. Вероятность любого события – величина не отрицательная и не превышающая единицу:
0 £ P (A ) £ 1.

Статистическое определение вероятности случайного события применяется тогда, когда невозможно использоватьклассическое определение (1). Это часто имеет место в биологии и медицине. В таком случае вероятность Р (А ) определяют путем обобщения результатов реально проведенных серий испытаний (опытов).

Введем понятие относительной частоты появления случайного события. Пусть была проведена серия, состоящая из N опытов (число N может быть выбрано заранее); интересующее нас событие А произошло в М из них (M < N ). Отношение числа опытов М , в которых произошло это событие, к общему числу проведенных опытов N называют относительной частотой появления случайного события А в данной серии опытов – Р * (А )

Р* (А ) = .

Экспериментально установлено, что если серии испытаний (опытов) проводятся в одинаковых условиях и в каждой из них число N достаточно велико, то относительная частота обнаруживает свойство устойчивости: от серии к серии она меняется мало, приближаясь c увеличением числа опытов к некоторой постоянной величине. Ее и принимают за статистическую вероятность случайного события А :

Р (А) = lim , при N , (2)

Итак, статистической вероятностью Р (А ) случайного события А называют предел, к которому стремится относительная частота появления этого события при неограниченном возрастании числа испытаний (при N → ∞).

Приближенно статистическая вероятность случайного события равна относительной частоте появления этого события при большом числе испытаний:

Р (А ) ≈ Р* (А ) = (при больших N ) (3)

Например, в опытах по бросанию монеты относительная частота выпадения герба при 12000 бросаний оказалась равной 0,5016, а при 24000 бросаний – 0,5005. В соответствии с формулой (1):

P (герб) = = 0,5 = 50%

Пример. При врачебном обследовании 500 человек у 5 из них обнаружили опухоль в легких (о. л.). Определите относительную частоту и вероятность этого заболевания.

Решение : по условию задачи М = 5, N = 500, относительная частота Р *(о. л.) = М /N = 5/500 = 0,01; поскольку N достаточно велико, можно с хорошей точностью считать, что вероятность наличия опухоли в легких равна относительной частоте этого события:

Р (о. л.) = Р *(о. л.) = 0,01 = 1%.

Перечисленные ранее свойства вероятности случайного события сохраняются и при статистическом определении данной величины.

1.3. Виды случайных событий. Основные теоремы теории вероятностей

Все случайные события можно разделить на:

¾ несовместные;

¾ независимые;

¾ зависимые.

Для каждого вида событий характерны свои особенности и теоремы теории вероятностей.

1.3.1. Несовместные случайные события. Теорема сложения вероятностей

Случайные события (А, В, С, D …) называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.

Пример1. Подброшена монета. При ее падении появление «герба» исключает появление «решки» (надписи, определяющей цену монеты). События «выпал герб» и «выпала решка» несовместные.

Пример 2. Получение студентом на одном экзамене оценки «2», или «3», или «4», или «5» – события несовместные, так как одна из этих оценок исключает другую на том же экзамене.

Для несовместных случайных событий выполняется теорема сложения вероятностей: вероятность появления одного, но все равно какого, из нескольких несовместных событий А1, А2, А3 … А k равна сумме их вероятностей:

Р(А1или А2 … или А k ) = Р(А1) + Р(А2) + …+ Р(А k ). (4)

Пример 3. В урне находится 50 шаров: 20 белых, 20 черных и 10 красных. Найдите вероятность появления белого (событие А ) или красного шара (событие В ), когда шар наугад достают из урны.

Решение: Р (А или В ) = Р (А ) + Р (В );

Р (А ) = 20/50 = 0,4;

Р (В ) = 10/50 = 0,2;

Р (А или В ) = Р (б. ш. или к. ш.) = 0,4 + 0,2 = 0,6 = 60%.

Пример 4. В классе 40 детей. Из них в возрасте от 7 до 7,5 лет 8 мальчиков (А ) и 10 девочек (В ). Найдите вероятность присутствия в классе детей такого возраста.

Решение: Р (А ) = 8/40 = 0,2; Р (В ) = 10/40 = 0,25.

Р(А или В) = 0,2 + 0,25 = 0,45 = 45%

Следующее важное понятие – полная группа событий: несколько несовместных событий образуют полную группу событий, если в результате каждого испытания может появляться только одно из событий этой группы и никакое другое.

Пример 5. Стрелок произвел выстрел по мишени. Обязательно произойдет одно из следующих событий: попадание в «десятку», в «девятку», в «восьмерку»,.. ,в «единицу» или промах. Эти 11 несовместных событий образуют полную группу.

Пример 6. На экзамене в Вузе студент может получить одну из следующих четырех оценок: 2, 3, 4 или 5. Эти четыре несовместных события также образуют полную группу.

Если несовместные события А1, А2 … А k образуют полную группу, то сумма вероятностей этих событий всегда равна единице:

Р (А1 ) + Р (А2 )+ … Р (А k ) = 1, (5)

Это утверждение часто используется при решении многих прикладных задач.

Если два события единственно возможны и несовместны, то их называют противоположными и обозначают А и . Такие события составляют полную группу, поэтому сумма их вероятностей всегда равна единице:

Р (А ) + Р () = 1. (6)

Пример 7. Пусть Р (А ) – вероятность летального исхода при некотором заболевании; она известна и равна 2%. Тогда вероятность благополучного исхода при этом заболевании равна 98% (Р () = 1 – Р (А ) = 0,98), так как Р (А ) + Р () = 1.

1.3.2. Независимые случайные события. Теорема умножения вероятностей

Случайные события называются независимыми, если появление одного из них никак не влияет на вероятность появления других событий.

Пример 1. Если есть две или более урны с цветными шарами, то извлечение какого-либо шара из одной урны никак не повлияет на вероятность извлечения других шаров из оставшихся урн.

Для независимых событий справедлива теорема умножения вероятностей: вероятность совместного (одновременного ) появления нескольких независимых случайных событий равна произведению их вероятностей:

Р(А1и А2 и А3 … и А k ) = Р(А1) ∙Р(А2) ∙…∙Р(А k ). (7)

Совместное (одновременное) появление событий означает, что происходят события и А1, и А2 , и А3 … и А k .

Пример 2. Есть две урны. В одной находится 2 черных и 8 белых шаров, в другой – 6 черных и 4 белых. Пусть событие А –выбор наугад белого шара из первой урны, В – из второй. Какова вероятность выбрать наугад одновременно из этих урн по белому шару, т. е. чему равна Р (А и В )?

Решение: вероятность достать белый шар из первой урны
Р (А ) = = 0,8 из второй – Р (В ) = = 0,4. Вероятность одновременно достать по белому шару из обеих урн –
Р (А и В ) = Р (А Р (В ) = 0,8∙ 0,4 = 0,32 = 32%.

Пример 3. Рацион с пониженным содержанием йода вызывает увеличение щитовидной железы у 60% животных большой популяции. Для эксперимента нужны 4 увеличенных железы. Найдите вероятность того, что у 4 случайно выбранных животных будет увеличенная щитовидная железа.

Решение : Случайное событие А – выбор наугад животного с увеличенной щитовидной железой. По условию задачи вероятность этого события Р (А ) = 0,6 = 60%. Тогда вероятность совместного появления четырех независимых событий – выбор наугад 4 животных с увеличенной щитовидной железой – будет равна:

Р (А 1 и А 2 и А 3 и А 4) = 0,6 ∙ 0,6 ∙0,6 ∙ 0,6=(0,6)4 ≈ 0,13 = 13%.

1.3.3. Зависимые события. Теорема умножения вероятностей для зависимых событий

Случайные события А и В называются зависимыми, если появление одного из них, например, А изменяет вероятность появления другого события – В. Поэтому для зависимых событий используются два значения вероятности: безусловная и условная вероятности.

Если А и В зависимые события, то вероятность наступления события В первым (т. е. до события А ) называется безусловной вероятностью этого события и обозначается Р (В ). Вероятность наступления события В при условии, что событие А уже произошло, называется условной вероятностью события В и обозначается Р (В /А ) или РА (В).

Аналогичный смысл имеют безусловная – Р (А ) и условная – Р (А/В ) вероятности для события А.

Теорема умножения вероятностей для двух зависимых событий: вероятность одновременного наступления двух зависимых событий А и В равна произведению безусловной вероятности первого события на условную вероятность второго:

Р (А и В ) = Р (А ) ∙Р (В/А ) , (8)

А , или

Р (А и В ) = Р (В ) ∙Р (А/В), (9)

если первым наступает событие В .

Пример 1. В урне 3 черных шара и 7 белых. Найдите вероятность того, что из этой урны один за другим (причем первый шар не возвращают в урну) будут вынуты 2 белых шара.

Решение : вероятность достать первый белый шар (событие А ) равна 7/10. После того как он вынут, в урне остается 9 шаров, из них 6 белых. Тогда вероятность появления второго белого шара (событие В ) равна Р (В /А ) = 6/9, а вероятность достать подряд два белых шара равна

Р (А и В ) = Р (А )∙Р (В /А ) = = 0,47 = 47%.

Приведенная теорема умножения вероятностей для зависимых событий допускает обобщение на любое количество событий. В частности, для трех событий, связанных друг с другом:

Р (А и В и С ) = Р (А ) ∙ Р (В/А ) ∙ Р (С/АВ ). (10)

Пример 2. В двух детских садах, каждый из которых посещает по 100 детей, произошла вспышка инфекционного заболевания. Доли заболевших составляют соответственно 1/5 и 1/4, причем в первом учреждении 70 %, а во втором – 60 % заболевших – дети младше 3-х лет. Случайным образом выбирают одного ребенка. Определите вероятность того, что:

1) выбранный ребенок относится к первому детскому саду (событие А ) и болен (событие В ).

2) выбран ребенок из второго детского сада (событие С ), болен (событие D ) и старше 3-х лет (событие Е ).

Решение . 1) искомая вероятность –

Р (А и В ) = Р (А ) ∙ Р (В /А ) = = 0,1 = 10%.

2) искомая вероятность:

Р (С и D и Е ) = Р (С ) ∙ Р (D /C ) ∙ Р (Е /CD ) = = 5%.

1.4. Формула Байеса

Если вероятность совместного появления зависимых событий А и В не зависит от того, в каком порядке они происходят, то Р (А и В ) = Р (А ) ∙Р (В/А ) = Р (В ) × Р (А/В ). В этом случае условную вероятность одного из событий можно найти, зная вероятности обоих событий и условную вероятность второго:

Р (В/А ) = (11)

Обобщением данной формулы на случай многих событий является формула Байеса.

Пусть «n » несовместных случайных событий Н1, Н2, …, Н n , образуют полную группу событий. Вероятности этих событий – Р (Н1 ), Р (Н2 ), …, Р (Н n ) известны и так как они образуют полную группу, то = 1.

Некоторое случайное событие А связано с событиями Н1, Н2, …, Н n , причем известны условные вероятности появления события А с каждым из событий Н i , т. е. известны Р (А/Н1 ), Р (А/Н2 ), …, Р (А/Н n ). При этом сумма условных вероятностей Р (А/Н i ) может быть не равна единице т. е. ≠ 1.

Тогда условная вероятность появления события Н i при реализации события А (т. е. при условии, что событие А произошло) определяется формулой Байеса:

Причем для этих условных вероятностей .

Формула Байеса нашла широкое применение не только в математике, но и в медицине. Например, она используется для вычисления вероятностей тех или иных заболеваний. Так, если Н 1,…, Н n – предполагаемые диагнозы для данного пациента, А – некоторый признак, имеющий отношение к ним (симптом, определенный показатель анализа крови, мочи, деталь рентгенограммы и т. д.), а условные вероятности Р (А/Н i ) проявления этого признака при каждом диагнозе Н i (i = 1,2,3,…n ) заранее известны, то формула Байеса (12) позволяет вычислить условные вероятности заболеваний (диагнозов) Р (Н i ) после того как установлено, что характерный признак А присутствует у пациента.

Пример1. При первичном осмотре больного предполагаются 3 диагноза Н 1, Н 2, Н 3. Их вероятности, по мнению врача, распределяются так: Р (Н 1) = 0,5; Р (Н 2) = 0,17; Р (Н 3) = 0,33. Следовательно, предварительно наиболее вероятным кажется первый диагноз. Для его уточнения назначается, например, анализ крови, в котором ожидается увеличение СОЭ (событие А ). Заранее известно (на основании результатов исследований), что вероятности увеличения СОЭ при предполагаемых заболеваниях равны:

Р (А /Н 1) = 0,1; Р (А /Н 2) = 0,2; Р (А /Н 3) = 0,9.

В полученном анализе зафиксировано увеличение СОЭ (событие А произошло). Тогда расчет по формуле Байеса (12) дает значения вероятностей предполагаемых заболеваний при увеличенном значении СОЭ: Р (Н 1/А ) = 0,13; Р (Н 2/А ) = 0,09;
Р (Н 3/А ) = 0,78. Эти цифры показывают, что с учетом лабораторных данных наиболее реален не первый, а третий диагноз, вероятность которого теперь оказалась достаточно большой.

Приведенный пример – простейшая иллюстрация того, как с помощью формулы Байеса можно формализовать логику врача при постановке диагноза и благодаря этому создать методы компьютерной диагностики.

Пример 2. Определите вероятность, оценивающую степень риска перинатальной* смертности ребенка у женщин с анатомически узким тазом.

Решение : пусть событие Н 1 – благополучные роды. По данным клинических отчетов, Р (Н 1) = 0,975 = 97,5 %, тогда, если Н2 – факт перинатальной смертности, то Р (Н 2) = 1 – 0,975 = 0,025 = 2,5 %.

Обозначим А – факт наличия узкого таза у роженицы. Из проведенных исследований известны: а) Р (А /Н 1) – вероятность узкого таза при благоприятных родах, Р (А /Н 1) = 0,029, б) Р (А /Н 2) – вероятность узкого таза при перинатальной смертности,
Р (А /Н 2) = 0,051. Тогда искомая вероятность перинатальной смертности при узком тазе у роженицы рассчитывается по формуле Байса (12) и равна:


Таким образом, риск перинатальной смертности при анатомически узком тазе значительно выше (почти вдвое) среднего риска (4,4 % против 2,5 %).

Подобные расчеты, обычно выполняемые с помощью компьютера, лежат в основе методов формирования групп пациентов повышенного риска, связанного с наличием того или иного отягощающего фактора.

Формула Байеса очень полезна для оценки многих других медико-биологических ситуаций, что станет очевидным при решении приведенных в пособии задач.

1.5. О случайных событиях с вероятностями близкими к 0 или к 1

При решении многих практических задач приходится иметь дело с событиями, вероятность которых очень мала, т. е. близка к нулю. На основании опыта в отношении таких событий принят следующий принцип. Если случайное событие имеет очень малую вероятность, то практически можно считать, что в единичном испытании оно не наступит, иначе говоря, возможностью его появления можно пренебречь. Ответ на вопрос, насколько малой должна быть эта вероятность, определяется существом решаемых задач, тем, насколько важен для нас результат предсказания. Например, если вероятность того, что парашют при прыжке не раскроется равна 0,01, то применение таких парашютов недопустимо. Однако равная той же 0,01 вероятность того, что поезд дальнего следования прибудет с опозданием, делает нас практически уверенными в том, что он прибудет вовремя.

Достаточно малую вероятность, при которой (в данной конкретной задаче) событие можно считать практически невозможным, называют уровнем значимости. На практике уровень значимости обычно принимают равным 0,01 (однопроцентный уровень значимости) или 0,05 (пятипроцентный уровень значимости), намного реже он берется равным 0,001.

Введение уровня значимости позволяет утверждать, что если некоторое событие А практически невозможно, то противоположное событие - практически достоверно, т. е. для него Р () » 1.

Глава II . СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

2.1. Случайные величины, их виды

В математике величина – это общее название различных количественных характеристик предметов и явлений. Длина, площадь, температура, давление и т. д. – примеры разных величин.

Величина, которая принимает различные числовые значения под влиянием случайных обстоятельств, называется случайной величиной . Примеры случайных величин: число больных на приеме у врача; точные размеры внутренних органов людей и т. д.

Различают дискретные и непрерывные случайные величины.

Случайная величина называется дискретной, если она принимает только определенные отделенные друг от друга значения, которые можно установить и перечислить.

Примерами дискретной случайной величиной являются:

– число студентов в аудитории – может быть только целым положительным числом: 0,1,2,3,4….. 20…..;

– цифра, которая появляется на верхней грани при бросании игральной кости – может принимать лишь целые значения от 1 до 6;

– относительная частота попадания в цель при 10 выстрелах – ее значения: 0; 0,1; 0,2; 0,3 …1

– число событий, происходящих за одинаковые промежутки времени: частота пульса, число вызовов скорой помощи за час, количество операций в месяц с летальным исходом и т. д.

Случайная величина называется непрерывной, если она может принимать любые значения внутри определенного интервала, который иногда имеет резко выраженные границы, а иногда – нет *. К непрерывным случайным величинам относятся, например, масса тела и рост взрослых людей, масса тела и объем мозга, количественное содержание ферментов у здоровых людей, размеры форменных элементов крови, р Н крови и т. п.

Понятие случайной величины играет определяющую роль в современной теории вероятностей, разработавшей специальные приемы перехода от случайных событий к случайным величинам.

Если случайная величина зависит от времени, то можно говорить о случайном процессе.

2.2. Закон распределения дискретной случайной величины

Чтобы дать полную характеристику дискретной случайной величины необходимо указать все ее возможные значения и их вероятности.

Соответствие между возможными значениями дискретной случайной величины и их вероятностями называется законом распределения этой величины.

Обозначим возможные значения случайной величины Х через х i , а соответствующие им вероятности – через р i *. Тогда закон распределения дискретной случайной величины можно задать тремя способами: в виде таблицы, графика или формулы.

В таблице, которая называется рядом распределения, перечисляются все возможные значения дискретной случайной величины Х и соответствующие этим значениям вероятности Р (Х ):

Х

…..

…..

P (X )

…..

…..

При этом сумма всех вероятностей р i должна быть равна единице (условие нормировки):

р i = p 1 + p 2 + ... + pn = 1. (13)

Графически закон представляется ломаной линией, которую принято называть многоугольником распределения (рис.1). Здесь по горизонтальной оси откладывают все возможные значения случайной величины х i , , а по вертикальной оси – соответствующие им вероятности р i

Аналитически закон выражается формулой. Например, если вероятность попадания в цель при одном выстреле равна р, то вероятность поражения цели 1 раз при n выстрелах дается формулой Р (n ) = n qn -1 × p , где q = 1 – р – вероятность промаха при одном выстреле.

2.3. Закон распределения непрерывной случайной величины. Плотность распределения вероятности

Для непрерывных случайных величин невозможно применить закон распределения в формах, приведенных выше, поскольку такая величина имеет бесчисленное («несчетное») множество возможных значений, сплошь заполняющих некоторый интервал. Поэтому составить таблицу, в которой были бы перечислены все ее возможные значения, или построить многоугольник распределения нельзя. Кроме того, вероятность какого-либо ее конкретного значения очень мала (близка к 0)*. Вместе с тем различные области (интервалы) возможных значений непрерывной случайной величины не равновероятны. Таким образом, и в данном случае действует некий закон распределения, хотя и не в прежнем смысле.

Рассмотрим непрерывную случайную величину Х , возможные значения которой сплошь заполняют некий интервал , b )**. Закон распределения вероятностей такой величины должен позволить найти вероятность попадания ее значения в любой заданный интервал (х1, х2 ), лежащий внутри (а, b ), рис.2.

Эту вероятность обозначают Р (х1 < Х < х2 ), или
Р (х1 £ Х £ х2 ).

Рассмотрим сначала очень малый интервал значений Х – от х до (х + D х ); см. рис.2. Малая вероятность d Р того, что случайная величина Х примет какое-то значение из интервала (х, х + D х ), будет пропорциональна величине данного интервала D х: d Р ~ D х , или, введя коэффициент пропорциональности f , который сам может зависеть от х , получим:

d Р = f (х ) × Dх = f (x ) × dx (14)

Введенная здесь функция f (х ) называется плотностью распределения вероятностей случайной величины Х, или, короче, плотностью вероятности , плотностью распределения . Уравнение (13) – дифференциальное уравнение, решение которого дает вероятность попадания величины Х в интервал (х1 , х2) :

Р (х1 < Х < х2 ) = f (х ) d х. (15)

Графически вероятность Р (х1 < Х < х2 ) равна площади криволинейной трапеции, ограниченной осью абсцисс, кривой f (х ) и прямыми Х = х1 и Х = х2 (рис.3). Это следует из геометрического смысла определенного интеграла (15) Кривая f (х ) при этом называется кривой распределения.

Из (15) следует, что если известна функция f (х ), то, изменяя пределы интегрирования, можно найти вероятность для любых интересующих нас интервалов. Поэтому именно задание функции f (х ) полностью определяет закон распределения для непрерывных случайных величин.

Для плотности вероятности f (х ) должно выполняться условие нормировки в виде:

f (х ) d х = 1, (16)

если известно, что все значения Х лежат в интервале (а, b ), или в виде:

f (х ) d х = 1 , (17)

если границы интервала для значений Х точно неопределенны. Условия нормировки плотности вероятности (16) или (17) являются следствием того, что значения случайной величины Х достоверно лежат в пределах (а, b ) или (-¥, +¥). Из (16) и (17) следует, что площадь фигуры, ограниченной кривой распределения и осью абсцисс, всегда равна 1.

2.4. Основные числовые характеристики случайных величин

Результаты, изложенные в параграфах 2.2 и 2.3, показывают, что полную характеристику дискретной и непрерывной случайных величин можно получить, зная законы их распределения. Однако во многих практически значимых ситуациях пользуются так называемыми числовыми характеристиками случайных величин, главное назначение этих характеристик – выразить в сжатой форме наиболее существенные особенности распределения случайных величин. Важно, что данные параметры представляют собой конкретные (постоянные) значения, которые можно оценивать с помощью полученных в опытах данных. Этими оценками занимается «Описательная статистика».

В теории вероятностей и математической статистике используется достаточно много различных характеристик, но мы рассмотрим только наиболее употребляемые. Причем лишь для части из них приведем формулы, по которым рассчитываются их значения, в остальных случаях вычисления оставим компьютеру.

Рассмотрим характеристики положения – математическое ожидание, моду, медиану.

Они характеризуют положение случайной величины на числовой оси, т. е. указывают некоторое ориентировочное значение, около которого группируются все возможные значения случайной величины. Среди них важнейшую роль играет математическое ожидание М (Х ).

Различные определения вероятности случайного события

Теория вероятностей – математическая наука, которая по вероятностям одних событий позволяет оценивать вероятности других событий, связанных с первыми.

Подтверждением того, что понятие «вероятность события» не имеет определения, является тот факт, что в теории вероятностей существует несколько подходов к объяснению этого понятия:

Классическое определение вероятности случайного события.

Вероятность события равна отношению числа благоприятных событию исходов опыта к общему числу исходов опыта.

Где

Число благоприятных исходов опыта;

Общее числоисходов опыта.

Исход опыта называется благоприятным для события , если при этом исходе опыта появилось событие . Например, если событие - появление карты красной масти, то появление туза бубей – исход, благоприятный событию .

Примеры.

1) Вероятность выпадения 5 очков на грани кубика равна , поскольку кубик может упасть любой из 6 граней кверху, а 5 очков находятся только на одной грани.

2) Вероятность выпадения герба при однократном бросании монеты - , поскольку монета может упасть гербом или решкой – два исхода опыта, а герб изображен лишь на одной стороне монеты.

3) Если в урне 12 шаров, из которых 5 – черные, то вероятность вынуть черный шар - , поскольку всего исходов опята – 12, а благоприятных из них - 5

Замечание. Классическое определение вероятности применимо при двух условиях:

1) все исходы опыта должны быть равновероятными;

2) опыт должен иметь конечное число исходов.

На практике бывает сложно доказать, что события равновероятные: например,при произведении опыта с подбрасыванием монеты на результат опыта могут влиять такие факторы как несимметричность монеты, влияние ее формы на аэродинамические характеристики полета, атмосферные условия и т.д., кроме того, существуют опыты с бесконечным числом исходов.

Пример . Ребенок бросает мяч, и максимальное расстояние, на которое он может забросить мяч – 15 метров. Найти вероятность того, что мяч улетит за отметку 3 м.

Решение. Искомую вероятность предлагается считать, как отношение длины отрезка, находящегося за отметкой 3 м (благоприятная область) к длине всего отрезка (всевозможные исходы):

Пример. Точку случайным образом бросают в круг радиуса 1. Какова вероятность того, что точка попадет во вписанный в круг квадрат?

Решение. Под вероятностью того, что точка попадет в квадрат, понимают в данном случае отношение площади квадрата (благоприятной площади)к площади круга (общая площадь фигуры, куда бросают точку):

Диагональ квадрата равна 2 и выражается через его сторону по теореме Пифагора:

Аналогичные рассуждения проводят и в пространстве: если в теле объема случайным образом выбирается точка, то вероятность того, что точка окажется в части тела объема , вычисляется как отношение объема благоприятной части к общему объему тела:

Объединяя все случаи, можно сформулировать правило вычисления геометрической вероятности:

Если в некоторой области случайным образом выбирается точка, то вероятность того, что точка окажется в части этой области равна:

, где

Обозначает меру области: в случае отрезка – это длина, в случае плоской области – это площадь, в случае пространственного тела – это объем, на поверхности – площадь поверхности, на кривой – длина кривой.

Интересным приложением понятия геометрической вероятности является задача о встрече.

Задача. (О встрече)

Два студента договорились о встрече, например, в10 часов утра на следующих условиях: каждый приходит в любое время в течение часа с 10 до 11 и ждет 10 минут, после чего уходит. Какова вероятность встречи?

Решение. Проиллюстрируем условия задачи следующим образом: на оси отложим время, идущее для первого из встречающихся, а на оси - время, идущее для второго. Поскольку эксперимент длится один час, то по обеим осям отложим отрезки длины 1. Моменты времени, когда встречающиеся пришли одновременно, интерпретируется диагональю квадрата.

Пусть первый пришел в некоторый момент времени . Студенты встретятся, если время прибытия второго на место встречи заключается в промежутке

Рассуждая так для любого момента времени , получим, что область времени, интерпретирующая возможность встречи («пересечение времён»нахождения на нужном месте первого и второго студентов) находится между двумя прямыми: и . Вероятность встречи определяется по формуле геометрической вероятности:

В 1933 г. Колмогоров А.М. (1903 - 1987) предложил аксиоматический подход к построению и изложению теории вероятности, который стал общепринятымв настоящее время. При построении теории вероятности как формальной аксиоматической теории требуется не только ввести базовое понятие – вероятность случайного события, но и описать его свойства с помощью аксиом (утверждений интуитивно верных, принимаемых без доказательства).

Такими утверждениями являются утверждения, аналогичные свойствам относительной частоты появления события.

Относительной частотой появления случайного события называется отношение числа появлений события в испытаниях к общему числу проведенных испытаний:

Очевидно, , для достоверного события , для невозможного события , для несовместных событий и верно следующее:

Пример. Проиллюстрируем последнее утверждение. Пусть из колоды в 36 карт вынимают карты. Пусть событие означает появление бубей , событие означает появление червей, а событие - появление карты красной масти. Очевидно, события и несовместны. При появлении красной масти ставим метку возле события , при появлении бубей – возле события , а при появлении червей – возле события . Очевидно, что метка возле события будет поставлена тогда и только тогда, когда будет поставлена метка возле события или возле события , т.е. .

Назовем вероятностью случайного события число, сопоставленное событию по следующему правилу:

Для несовместных событий и

Итак,

Относительная частота

Теория вероятности - довольно обширный самостоятельный раздел математики. В школьном курсе теория вероятности рассматривается очень поверхностно, однако в ЕГЭ и ГИА имеются задачи на данную тему. Впрочем, решать задачи школьного курса не так уж сложно (по крайней мере то, что касается арифметических операций) - здесь не нужно считать производные, брать интегралы и решать сложные тригонометрические преобразования - главное, уметь обращаться с простыми числами и дробями.

Теория вероятности - основные термины

Главные термины теории вероятности - испытание, исход и случайное событие. Испытанием в теории вероятности называют эксперимент - подбросить монету, вытянуть карту, провести жеребьевку - все это испытания. Результат испытания, как вы уже догадались, называется исходом.

А что же такое случайность события? В теории вероятности предполагается, что испытание проводится ни один раз и исходов много. Случайным событием называют множество исходов испытания. Например, если вы бросаете монету, может произойти два случайных события - выпадет орел или решка.

Не путайте понятия исход и случайное событие. Исход - это один результат одного испытания. Случайное событие - это множество возможных исходов. Существует, кстати, и такой термин, как невозможное событие. Например, событие "выпало число 8" на стандартном игровом кубике является невозможным.

Как найти вероятность?

Все мы примерно понимаем, что такое вероятность, и довольно часто используем данное слово в своем лексиконе. Кроме того, мы можем даже делать некоторые выводы относительно вероятности того или иного события, например, если за окном снег, мы с большой вероятностью можем сказать, что сейчас не лето. Однако как выразить данное предположение численно?

Для того чтобы ввести формулу для нахождения вероятности, введем еще одно понятие - благоприятные исход, т. е. исход, который является благоприятным для того или иного события. Определение довольно двусмысленное, конечно, однако по условию задачи всегда понятно, какой из исходов благоприятный.

Например: В классе 25 человек, трое из них Кати. Учитель назначает дежурной Олю, и ей нужен напарник. Какова вероятность того, что напарником станет Катя?

В данном примере благоприятный исход - напарник Катя. Чуть позже мы решим эту задачу. Но сначала введем с помощью дополнительного определения формулу для нахождения вероятности.

  • Р = А/N, где P - вероятность, A - число благоприятных исходов, N - общее количество исходов.

Все школьные задачи крутятся вокруг одной этой формулы, и главная трудность обычно заключается в нахождении исходов. Иногда их найти просто, иногда - не очень.

Как решать задачи на вероятность?

Задача 1

Итак, теперь давайте решим поставленную выше задачу.

Число благоприятных исходов (учитель выберет Катю) равно трем, ведь Кать в классе три, а общих исходов - 24 (25-1, ведь Оля уже выбрана). Тогда вероятность равна: P = 3/24=1/8=0,125. Таким образом, вероятность того, что напарником Оли окажется Катя, составляет 12,5%. Несложно, правда? Давайте разберем кое-что посложней.

Задача 2

Монету бросили два раза, какова вероятность выпадения комбинации: один орел и одна решка?

Итак, считаем общие исходы. Как могут выпасть монеты - орел/орел, решка/решка, орел/решка, решка/орел? Значит, общее число исходов - 4. Сколько благоприятных исходов? Два - орел/решка и решка/орел. Таким образом, вероятность выпадения комбинации орел/решка равна:

  • P = 2/4=0,5 или 50 процентов.

А теперь рассмотрим такую задачу. У Маши в кармане 6 монет: две - номиналом 5 рублей и четыре - номиналом 10 рублей. Маша переложила 3 монеты в другой карман. Какова вероятность того, что 5-рублевые монеты окажутся в разных карманах?

Для простоты обозначим монеты цифрами - 1,2 - пятирублевые монеты, 3,4,5,6 - десятирублевые монеты. Итак, как могут лежать монеты в кармане? Всего есть 20 комбинаций:

  • 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

На первый взгляд может показаться, что некоторые комбинации пропали, например, 231, однако в нашем случае комбинации 123, 231 и 321 равнозначны.

Теперь считаем, сколько у нас благоприятных исходов. За них берем те комбинации, в которых есть либо цифра 1, либо цифра 2: 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256. Их 12. Таким образом, вероятность равна:

  • P = 12/20 = 0,6 или 60%.

Задачи по теории вероятности, представленные здесь, довольно простые, однако не думайте, что теория вероятности - это простой раздел математики. Если вы решите продолжать образование в вузе (за исключением гуманитарных специальностей), у вас обязательно будут пары по высшей математике, на которых вас ознакомят с более сложными терминами данной теории, и задачи там будут куда сложнее.



Что еще почитать