Дисперсия дискретной случайной величины. Дисперсия, виды и свойства дисперсии Дисперсия 2

Урок передачи-усвоения новых знаний, умений и навыков.

Тема: Дисперсия. Её свойства.

Цели урока:

  • Познавательная: 1) передача учащимся определенной системы математических знаний, умений, навыков; 2) выработка у учащихся умения
    решать основные типы задач теории вероятности и применять теорию в конкретных различных ситуациях; 3) формирование представлений об идеях и методах высшей математики; 4) формирование у учащихся на материале учебного предмета высшей математики способов учебно-познавательной деятельности.
  • Развивающая: 1) развитие мышления; 2) развитие памяти; 3) развитие элементов творческой деятельности, как качеств мышления; 4) развитие речи, заключающееся в овладении математической терминологией, а также приемами построения определений, понятий и оперирование ними.
  • Воспитывающая: 1) воспитать у учеников любовь к выбранной профессии и данному предмету.

Задача: заключается в определении свойств дисперсии случайной величины и в выводе формулы для ее расчета.

Ход урока.

  1. Организационный момент.
  2. Повторение старого и изучение нового материала.
  3. Закрепление нового материала.
  4. Домашнее задание.

1. Проверка присутствующих учеников на уроке.

2. Математика – королева всех наук!
Без нее не летят корабли,
Без нее не поделишь ни акра земли,
Даже хлеба не купишь, рубля не сочтешь,
Что по не узнаешь, а узнав не поймешь!

Учитель : “Итак, математическое ожидание не полностью характеризует случайную величину”

Ученик 1: “О как же так выходит я совсем пустяк”.

Ученик 2: “Да, ты право, правду говоришь”.

Ученик 1: “Но кто заменит вдруг меня, ведь моя формула, то всем нужна”.

Ученик 2: “Да, ты сначала про себя все вспомни”.

Ученик 1: “Без проблем, вот эти формулы, они известны всем. И если множество значений бесконечно, то ожидание находится как ряд, точнее его сумма:

А, если величина вдруг непрерывна, то рассмотреть имеем право мы предельный случай, и вот в итоге что получим:

Ученик 2: “Но это все смешно ведь ожидание не существует. Нет его!”.

Ученик 1: “Нет, ожидание существует, когда является абсолютно сходящимся и интеграл и сумма”.

Ученик 2: “И все же я твержу одно, нам ожидание не нужно”.

Ученик 1: “Ах как же так? Да это просто ”.

Учитель: “Стоп, стоп, закончим спор. Возьмите ручку и тетрадь, и в путь мы будем с вами спор решать. Но прежде чем начать, давайте вспомним лишь одно, чему отклонение от математического ожидания равно”.

Ученик 3: “О, это могу вспомнить я”.

Учитель: “Пожалуйста, вот мел, доска”.

Ученик 4: “Разность X – М(Х) называется отклонением случайной величины X от ее математического ожидания М(Х). Отклонение является случайной величиной. Так как математическое ожидание случайной величины -величина постоянная и математическое ожидание постоянной равно этой

постоянной, то М(Х – М(Х)) = М(Х) – М(М(Х)) = М (X) – М(Х) = 0. т, е, М(Х – М(Х)) =0.”.

Учитель: “Да, все верно, но друзья за меру рассеяния отклонения случайной величины от ее математического это принять нельзя. И из этого последует, что рассматривают модули или квадраты отклонений. А вот теперь послушайте определение: X случайной величины – дисперсия или рассеяние – это математическое ожидание квадрата ее отклонения. Обозначается как D(X), а формула имеет вид: D(X) = М((Х – М(Х)) 2). (1) Теперь давайте, определим, какой же знак величине присвоим мы?”.

Ученик 5: “Из свойств и определения математического ожидания можем получить, лишь одно, что как величина дисперсия неотрицательна D(X) > 0” (2).

Учитель: “Учитывая равенство один получим формулу для нахождения дисперсии: D(X) = М(Х 2) – (М(Х)) 2 . Которую быть может кто – нибудь докажет”.

Ученик 6: “Давайте я попробую. D(X)=M((X – М(Х)) 2) = М(Х 2 - 2ХМ(Х)+(М(Х)) 2)=М(Х 2) – 2М(ХМ(Х)+М((М(Х)) 2)=М(Х 2) – 2М(Х)М(Х)+(М(Х)) 2 =М(Х 2) – (М(Х)) 2 ”. (3)

Учитель: “Рассмотрим свойства случайной величины:

1. Дисперсия С – как постоянной величины равна нулю: D(C) - 0 (С – const). (4)

2. Постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат: D(CX)=C 2 D(X). (5)

3. Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий: D(X+Y) = D(X) + D(Y). (6)

4. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий: D(X – Y) = D(X) + D(Y). (7)

Докажем эти свойства принимая во внимание свойства ожидания:

D(C) = М((С – М(С)) 2) = М((С – С 2)) = М(0) = 0. Первое свойство доказано оно означает, что постоянная величина не имеет рассеяния так как принимает одно и тоже значение.

А теперь докажем второе свойство: D(CX) – М((СХ – М(СХ)) 2) = М((СХ

СМ(Х)) 2) = М(С 2 (Х – М(Х)) 2) = С 2 М((Х – М(Х)) 2) = C 2 D(X).

Для доказательства третьего свойства используем формулу три:

D(X+Y) = M((X+Y) 2) – (M(X+Y)) 2 = M(X 2 +2XY+Y 2) – (M(X)+M(Y)) 2 = M(X 2)+M(2XY)+M(Y 2) – ((M(X)) 2 +2M(X)M(Y)+(M(Y)) 2) = M(X 2)+2M(X)M(Y)+M(Y 2) – (M(X)) 2 – 2M(X)M(Y) – (M(Y)) 2 = M(X 2) - (M(X)) 2 +M(Y 2) – (M(Y)) 2 = D(X) – D(Y).

Третье свойство распространяется на любое число попарно-независимых случайных величин.

Доказательство четвертого свойства следует из формул (5) и (6).

D(X – Y) = D(X +(- Y)) – D(X) +D(– Y)=D(X)+(-l) 2 D(Y) = D(X)+D(Y).

Если случайная величина является X является дискретной и задан ее закон распределения Р(Х=х k) = p k (k= 1,2,3,n).

Таким образом случайная величина (X - М(Х)) 2 имеет следующий закон распределения: (к=1,2,3,n), =l.

Исходя из определения математического ожидания, получаем формулу

Дисперсия непрерывной случайной величины X, все возможные значения корой принадлежат отрезку [а,Ь] , определяется формулой:

D(X)=(x-M(X)) 2 p(x)dx (8)

где р(х) – плотность распределения этой величины. Дисперсию можно вычислять по формуле:

Для учеников, имеющих оценку “4” и “5” необходимо дома доказать формулу (9).

3. Закрепление нового материала в виде тестовой работы.

1) Тестовая работа по теме “Дисперсия и ее свойства”.

1. Продолжить определение: дисперсия – это.

2. Выберите правильную формулу для расчета дисперсии:

а) D(X)=D(X) 2 – (D(X)) 2 ;
б) D(X)=M(X – D(X 2));
в)D(X)=M((X-M(X)) 2);
г) D(X)=M(X) 2 – (M(X)) 2 ;

3. Определите какой знак принимает дисперсия:

а) D(X)>0;
б) D(X)<0;
в)D(X)>1;
г) D(X)>0;

4. Чему равна дисперсия постоянной величины:
a)D(X)=l;
б) D(X)=0;
в) D(X)=2;
r)D(X)=-l;

5. Выберите из перечисленных те свойства, которые на самом деле соответствуют дисперсии:

а) D(CX)=CD(X);
б) D(CX)=C 2 D(X);
в) D(X+Y)=D(X)+D(Y);
г) D(X-Y)=D(X) – D(Y);

6. Какое из свойств дисперсии можно применить для любого числа попарно-независимых случайных величин:

а) первое;
б) второе;
в) третье;
г) четвертое;

7. Каким термином еще называют дисперсию:

а) рассеянием;
б) разбросом;
в) перемещением;
г) распределением;

8. Если случайная величина X является дискретной и задан ее закон распределения Р(Х=х к)=р к. Определите в каких пределах изменяется величина к:

а) к=1,2,3 ;
б) к=1,2,3, ;
в) к=1,2,3 n;
г) к=п, ;

9. Выберите какое из четырех свойств дисперсии присуще математическому ожиданию:

а) ЩС)=0;
б) D(CX)=C 2 D(X);
в) D(X+Y)=D(X)+D(Y);
г) D(X-Y)=D(X)+D(Y);

10. Какому отрезку принадлежат все возможные значения дисперсии:

а) {а,b};
б) ;
в) [-1,1];
г) [а,b].

4. Домашнее задание: выучить определение и свойства дисперсии. Решить задачу №14. Зная, что

Найти математическое ожидание и = 2 +3, и дисперсию случайной величины и

В предыдущем мы привели ряд формул, позволяющих находить числовые характеристики функций, когда известны законы распределения аргументов. Однако во многих случаях для нахождения числовых характеристик функций не требуется знать даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики; при этом мы вообще обходимся без каких бы то ни было законов распределения. Определение числовых характеристик функций по заданным числовым характеристикам аргументов широко применяется в теории вероятностей и позволяет значительно упрощать решение ряда задач. По преимуществу такие упрощенные методы относятся к линейным функциям; однако некоторые элементарные нелинейные функции также допускают подобный подход.

В настоящем мы изложим ряд теорем о числовых характеристиках функций, представляющих в своей совокупности весьма простой аппарат вычисления этих характеристик, применимый в широком круге условий.

1. Математическое ожидание неслучайной величины

Сформулированное свойство является достаточно очевидным; доказать его можно, рассматривая неслучайную величину как частный вид случайной, при одном возможном значении с вероятностью единица; тогда по общей формуле для математического ожидания:

.

2. Дисперсия неслучайной величины

Если - неслучайная величина, то

3. Вынесение неслучайной величины за знак математического ожидания

, (10.2.1)

т. е. неслучайную величину можно выносить за знак математического ожидания.

Доказательство.

а) Для прерывных величин

б) Для непрерывных величин

.

4. Вынесение неслучайной величины за знак дисперсии и среднего квадратического отклонения

Если - неслучайная величина, а - случайная, то

, (10.2.2)

т. е. неслучайную величину можно выносить за знак дисперсии, возводя ее в квадрат.

Доказательство. По определению дисперсии

Следствие

,

т. е. неслучайную величину можно выносить за знак среднего квадратического отклонения ее абсолютным значением. Доказательство получим, извлекая корень квадратный из формулы (10.2.2) и учитывая, что с.к.о. - существенно положительная величина.

5. Математическое ожидание суммы случайных величин

Докажем, что для любых двух случайных величин и

т. е. математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий.

Это свойство известно под названием теоремы сложения математических ожиданий.

Доказательство.

а) Пусть - система прерывных случайных величин. Применим к сумме случайных величин общую формулу (10.1.6) для математического ожидания функции двух аргументов:

.

Ho представляет собой не что иное, как полную вероятность того, что величина примет значение :

;

следовательно,

.

Аналогично докажем, что

,

и теорема доказана.

б) Пусть - система непрерывных случайных величин. По формуле (10.1.7)

. (10.2.4)

Преобразуем первый из интегралов (10.2.4):

;

аналогично

,

и теорема доказана.

Следует специально отметить, что теорема сложения математических ожиданий справедлива для любых случайных величин - как зависимых, так и независимых.

Теорема сложения математических ожиданий обобщается на произвольное число слагаемых:

, (10.2.5)

т. е. математическое ожидание суммы нескольких случайных величин равно сумме их математических ожиданий.

Для доказательства достаточно применить метод полной индукции.

6. Математическое ожидание линейной функции

Рассмотрим линейную функцию нескольких случайных аргументов :

где - неслучайные коэффициенты. Докажем, что

, (10.2.6)

т. е. математическое ожидание линейной функции равно той же линейной функции от математических ожиданий аргументов.

Доказательство. Пользуясь теоремой сложения м. о. и правилом вынесения неслучайной величины за знак м. о., получим:

.

7. Дисп ep сия суммы случайных величин

Дисперсия суммы двух случайных величин равна сумме их дисперсий плюс удвоенный корреляционный момент:

Доказательство. Обозначим

По теореме сложения математических ожиданий

Перейдем от случайных величин к соответствующим центрированным величинам . Вычитая почленно из равенства (10.2.8) равенство (10.2.9), имеем:

По определению дисперсии

что и требовалось доказать.

Формула (10.2.7) для дисперсии суммы может быть обобщена на любое число слагаемых:

, (10.2.10)

где - корреляционный момент величин , знак под суммой обозначает, что суммирование распространяется на все возможные попарные сочетания случайных величин .

Доказательство аналогично предыдущему и вытекает из формулы для квадрата многочлена.

Формула (10.2.10) может быть записана еще в другом виде:

, (10.2.11)

где двойная сумма распространяется на все элементы корреляционной матрицы системы величин , содержащей как корреляционные моменты, так и дисперсии.

Если все случайные величины , входящие в систему, некоррелированы (т. е. при ), формула (10.2.10) принимает вид:

, (10.2.12)

т. е. дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых.

Это положение известно под названием теоремы сложения дисперсий.

8. Дисперсия линейной функции

Рассмотрим линейную функцию нескольких случайных величин.

где - неслучайные величины.

Докажем, что дисперсия этой линейной функции выражается формулой

, (10.2.13)

где - корреляционный момент величин , .

Доказательство. Введем обозначение:

. (10.2.14)

Применяя к правой части выражения (10.2.14) формулу (10.2.10) для дисперсии суммы и учитывая, что , получим:

где - корреляционный момент величин :

.

Вычислим этот момент. Имеем:

;

аналогично

Подставляя это выражение в (10.2.15), приходим к формуле (10.2.13).

В частном случае, когда все величины некоррелированны, формула (10.2.13) принимает вид:

, (10.2.16)

т. е. дисперсия линейной функции некоррелированных случайных величин равна сумме произведений квадратов коэффициентов на дисперсии соответствующих аргументов.

9. Математическое ожидание произведения случайных величин

Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

Доказательство. Будем исходить из определения корреляционного момента:

Преобразуем это выражение, пользуясь свойствами математического ожидания:

что, очевидно, равносильно формуле (10.2.17).

Если случайные величины некоррелированны , то формула (10.2.17) принимает вид:

т. е. математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Это положение известно под названием теоремы умножения математических ожиданий.

Формула (10.2.17) представляет собой не что иное, как выражение второго смешанного центрального момента системы через второй смешанный начальный момент и математические ожидания:

. (10.2.19)

Это выражение часто применяется на практике при вычислении корреляционного момента аналогично тому, как для одной случайной величины дисперсия часто вычисляется через второй начальный момент и математическое ожидание.

Теорема умножения математических ожиданий обобщается и на произвольное число сомножителей, только в этом случае для ее применения недостаточно того, чтобы величины были некоррелированны, а требуется, чтобы обращались в нуль и некоторые высшие смешанные моменты, число которых зависит от числа членов в произведении. Эти условия заведомо выполнены при независимости случайных величин, входящих в произведение. В этом случае

, (10.2.20)

т. е. математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.

Это положение легко доказывается методом полной индукции.

10. Дисперсия произведения независимых случайных величин

Докажем, что для независимых величин

Доказательство. Обозначим . По определению дисперсии

Так как величины независимы, и

При независимых величины тоже независимы; следовательно,

,

Но есть не что иное, как второй начальный момент величины , и, следовательно, выражается через дисперсию:

;

аналогично

.

Подставляя эти выражения в формулу (10.2.22) и приводя подобные члены, приходим к формуле (10.2.21).

В случае, когда перемножаются центрированные случайные величины (величины с математическими ожиданиями, равными нулю), формула (10.2.21) принимает вид:

, (10.2.23)

т. е. дисперсия произведения независимых центрированных случайных величин равна произведению их дисперсий.

11. Высшие моменты суммы случайных величин

В некоторых случаях приходится вычислять высшие моменты суммы независимых случайных величин. Докажем некоторые относящиеся сюда соотношения.

1) Если величины независимы, то

Доказательство.

откуда по теореме умножения математических ожиданий

Но первый центральный момент для любой величины равен нулю; два средних члена обращаются в нуль, и формула (10.2.24) доказана.

Соотношение (10.2.24) методом индукции легко обобщается на произвольное число независимых слагаемых:

. (10.2.25)

2) Четвертый центральный момент суммы двух независимых случайных величин выражается формулой

где - дисперсии величин и .

Доказательство совершенно аналогично предыдущему.

Методом полной индукции легко доказать обобщение формулы (10.2.26) на произвольное число независимых слагаемых.

Во многих случаях возникает необходимость ввести ещё одну числовую характеристику для измерения степени рассеивания, разброса значений , принимаемых случайной величиной ξ , вокруг её математического ожидания.

Определение. Дисперсией случайной величины ξ называется число.

D ξ = M(ξ-M ξ) 2 . (1)

Другими словами, дисперсия есть математическое ожидание квадрата отклонения значений случайной величины от её среднего значения.

называется средним квадратичным отклонением

величины ξ .

Если дисперсия характеризует средний размер квадрата отклонения ξ , то число можно рассматривать как некоторую среднюю характеристику самого отклонения, точнее, величины | ξ-Mξ |.

Из определения (1) вытекают следующие два свойства дисперсии.

1. Дисперсия постоянной величины равна нулю. Это вполне соответствует наглядному смыслу дисперсии, как «меры разброса».

Действительно, если

ξ = С, то Mξ = C и, значит Dξ = M(C-C ) 2 = M 0 = 0.

2. При умножении случайной величины ξ на постоянное число С её дисперсия умножается на C 2

D(Cξ ) = C 2 . (3)

Действительно

D(Cξ) = M(C

= M(C .

3. Имеет место, следующая формула для вычисления дисперсии:

Доказательство этой формулы следует из свойств математического ожидания.

Мы имеем:

4. Если величины ξ 1 и ξ 2 независимы, то дисперсия их суммы равна сумме их дисперсий:

Доказательство . Для доказательства используем свойства математического ожидания. Пусть 1 = m 1 , 2 = m 2 , тогда.

Формула (5) доказана.

Так как дисперсия случайной величины есть по определению математическое ожидание величины (ξ -m ) 2 , где m = Mξ , то для вычисления дисперсии можно воспользоваться формулами, полученными в §7 гл.II.

Так, если ξ есть ДСВ с законом распределения

x 1 x 2 ...
p 1 p 2 ...

то будем иметь:

Если ξ непрерывна случайная величина с плотностью распределения p(x) , тогда получим:

= . (8)

Если использовать формулу (4) для вычисления дисперсии, то можно получить другие формулы, а именно:

если величина ξ дискретна, и

= , (10)

если ξ распределена с плотностью p (x ).

Пример 1 . Пусть величина ξ равномерно распределена на отрезке [a,b ]. Воспользовавшись формулой (10) получим:

Можно показать, что дисперсия случайной величины , распределенной по нормальному закону с плотностью

p(x) = , (11)

равна σ 2 .

Тем самым выясняется смысл параметра σ, входящего в выражение плотности (11) для нормального закона; σ ecть среднее квадратичное отклонение величины ξ .

Пример 2 . Найти дисперсию случайной величины ξ , распределенной по биномиальному закону.


Решение . Воспользовавшись представлением ξ в виде

ξ = ξ 1 + ξ 2 + ξ n (см. пример 2 §7 гл. II) и применяя формулу сложения дисперсий для независимых величин, получим

Dξ = Dξ 1 + Dξ 2 + Dξ n .

Дисперсия любой из величин ξ i (i = 1,2, n ) подсчитывается непосредственно:

Dξ i = M(ξ i ) 2 - (Mξ i ) 2 = 0 2 · q + 1 2 p - p 2 = p (1-p ) = pq .

Окончательно получаем

= npq , где q = 1 - p .

Теория вероятности - особый раздел математики, который изучают только студенты высших учебных заведений. Вы любите расчёты и формулы? Вас не пугают перспективы знакомства с нормальным распределением, энтропией ансамбля, математическим ожиданием и дисперсией дискретной случайной величины? Тогда этот предмет вам будет очень интересен. Давайте познакомимся с несколькими важнейшими базовыми понятиями этого раздела науки.

Вспомним основы

Даже если вы помните самые простые понятия теории вероятности, не пренебрегайте первыми абзацами статьи. Дело в том, что без четкого понимания основ вы не сможете работать с формулами, рассматриваемыми далее.

Итак, происходит некоторое случайное событие, некий эксперимент. В результате производимых действий мы можем получить несколько исходов - одни из них встречаются чаще, другие - реже. Вероятность события - это отношение количества реально полученных исходов одного типа к общему числу возможных. Только зная классическое определение данного понятия, вы сможете приступить к изучению математического ожидания и дисперсии непрерывных случайных величин.

Среднее арифметическое

Ещё в школе на уроках математики вы начинали работать со средним арифметическим. Это понятие широко используется в теории вероятности, и потому его нельзя обойти стороной. Главным для нас на данный момент является то, что мы столкнемся с ним в формулах математического ожидания и дисперсии случайной величины.

Мы имеем последовательность чисел и хотим найти среднее арифметическое. Всё, что от нас требуется - просуммировать всё имеющееся и разделить на количество элементов в последовательности. Пусть мы имеем числа от 1 до 9. Сумма элементов будет равна 45, и это значение мы разделим на 9. Ответ: - 5.

Дисперсия

Говоря научным языком, дисперсия - это средний квадрат отклонений полученных значений признака от среднего арифметического. Обозначается одна заглавной латинской буквой D. Что нужно, чтобы её рассчитать? Для каждого элемента последовательности посчитаем разность между имеющимся числом и средним арифметическим и возведем в квадрат. Значений получится ровно столько, сколько может быть исходов у рассматриваемого нами события. Далее мы суммируем всё полученное и делим на количество элементов в последовательности. Если у нас возможны пять исходов, то делим на пять.

У дисперсии есть и свойства, которые нужно запомнить, чтобы применять при решении задач. Например, при увеличении случайной величины в X раз, дисперсия увеличивается в X в квадрате раз (т. е. X*X). Она никогда не бывает меньше нуля и не зависит от сдвига значений на равное значение в большую или меньшую сторону. Кроме того, для независимых испытаний дисперсия суммы равна сумме дисперсий.

Теперь нам обязательно нужно рассмотреть примеры дисперсии дискретной случайной величины и математического ожидания.

Предположим, что мы провели 21 эксперимент и получили 7 различных исходов. Каждый из них мы наблюдали, соответственно, 1,2,2,3,4,4 и 5 раз. Чему будет равна дисперсия?

Сначала посчитаем среднее арифметическое: сумма элементов, разумеется, равна 21. Делим её на 7, получая 3. Теперь из каждого числа исходной последовательности вычтем 3, каждое значение возведем в квадрат, а результаты сложим вместе. Получится 12. Теперь нам остается разделить число на количество элементов, и, казалось бы, всё. Но есть загвоздка! Давайте её обсудим.

Зависимость от количества экспериментов

Оказывается, при расчёте дисперсии в знаменателе может стоять одно из двух чисел: либо N, либо N-1. Здесь N - это число проведенных экспериментов или число элементов в последовательности (что, по сути, одно и то же). От чего это зависит?

Если количество испытаний измеряется сотнями, то мы должны ставить в знаменатель N. Если единицами, то N-1. Границу ученые решили провести достаточно символически: на сегодняшний день она проходит по цифре 30. Если экспериментов мы провели менее 30, то делить сумму будем на N-1, а если более - то на N.

Задача

Давайте вернемся к нашему примеру решения задачи на дисперсию и математическое ожидание. Мы получили промежуточное число 12, которое нужно было разделить на N или N-1. Поскольку экспериментов мы провели 21, что меньше 30, выберем второй вариант. Итак, ответ: дисперсия равна 12 / 2 = 2.

Математическое ожидание

Перейдем ко второму понятию, которое мы обязательно должны рассмотреть данной статье. Математическое ожидание - это результат сложения всех возможных исходов, помноженных на соответствующие вероятности. Важно понимать, что полученное значение, как и результат расчёта дисперсии, получается всего один раз для целой задачи, сколько бы исходов в ней не рассматривалось.

Формула математического ожидания достаточно проста: берем исход, умножаем на его вероятность, прибавляем то же самое для второго, третьего результата и т. д. Всё, связанное с этим понятием, рассчитывается несложно. Например, сумма матожиданий равна матожиданию суммы. Для произведения актуально то же самое. Такие простые операции позволяет с собой выполнять далеко не каждая величина в теории вероятности. Давайте возьмем задачу и посчитаем значение сразу двух изученных нами понятий. Кроме того, мы отвлекались на теорию - пришло время попрактиковаться.

Ещё один пример

Мы провели 50 испытаний и получили 10 видов исходов - цифры от 0 до 9 - появляющихся в различном процентном отношении. Это, соответственно: 2%, 10%, 4%, 14%, 2%,18%, 6%, 16%, 10%, 18%. Напомним, что для получения вероятностей требуется разделить значения в процентах на 100. Таким образом, получим 0,02; 0,1 и т.д. Представим для дисперсии случайной величины и математического ожидания пример решения задачи.

Среднее арифметическое рассчитаем по формуле, которую помним с младшей школы: 50/10 = 5.

Теперь переведем вероятности в количество исходов «в штуках», чтобы было удобнее считать. Получим 1, 5, 2, 7, 1, 9, 3, 8, 5 и 9. Из каждого полученного значения вычтем среднее арифметическое, после чего каждый из полученных результатов возведем в квадрат. Посмотрите, как это сделать, на примере первого элемента: 1 - 5 = (-4). Далее: (-4) * (-4) = 16. Для остальных значений проделайте эти операции самостоятельно. Если вы всё сделали правильно, то после сложения всех вы получите 90.

Продолжим расчёт дисперсии и математического ожидания, разделив 90 на N. Почему мы выбираем N, а не N-1? Правильно, потому что количество проведенных экспериментов превышает 30. Итак: 90/10 = 9. Дисперсию мы получили. Если у вас вышло другое число, не отчаивайтесь. Скорее всего, вы допустили банальную ошибку при расчётах. Перепроверьте написанное, и наверняка всё встанет на свои места.

Наконец, вспомним формулу математического ожидания. Не будем приводить всех расчётов, напишем лишь ответ, с которым вы сможете свериться, закончив все требуемые процедуры. Матожидание будет равно 5,48. Напомним лишь, как осуществлять операции, на примере первых элементов: 0*0,02 + 1*0,1… и так далее. Как видите, мы просто умножаем значение исхода на его вероятность.

Отклонение

Ещё одно понятие, тесно связанное с дисперсией и математическим ожиданием - среднее квадратичное отклонение. Обозначается оно либо латинскими буквами sd, либо греческой строчной «сигмой». Данное понятие показывает, насколько в среднем отклоняются значения от центрального признака. Чтобы найти её значение, требуется рассчитать квадратный корень из дисперсии.

Если вы построите график нормального распределения и захотите увидеть непосредственно на нём квадратичного отклонения, это можно сделать в несколько этапов. Возьмите половину изображения слева или справа от моды (центрального значения), проведите перпендикуляр к горизонтальной оси так, чтобы площади получившихся фигур были равны. Величина отрезка между серединой распределения и получившейся проекцией на горизонтальную ось и будет представлять собой среднее квадратичное отклонение.

Программное обеспечение

Как видно из описаний формул и представленных примеров, расчеты дисперсии и математического ожидания - не самая простая процедура с арифметической точки зрения. Чтобы не тратить время, имеет смысл воспользоваться программой, используемой в высших учебных заведениях - она называется «R». В ней есть функции, позволяющие рассчитывать значения для многих понятий из статистики и теории вероятности.

Например, вы задаете вектор значений. Делается это следующим образом: vector <-c(1,5,2…). Теперь, когда вам потребуется посчитать какие-либо значения для этого вектора, вы пишете функцию и задаете его в качестве аргумента. Для нахождения дисперсии вам нужно будет использовать функцию var. Пример её использования: var(vector). Далее вы просто нажимаете «ввод» и получаете результат.

В заключение

Дисперсия и математическое ожидание - это без которых сложно в дальнейшем что-либо рассчитать. В основном курсе лекций в вузах они рассматриваются уже в первые месяцы изучения предмета. Именно из-за непонимания этих простейших понятий и неумения их рассчитать многие студенты сразу начинают отставать по программе и позже получают плохие отметки по результатам сессии, что лишает их стипендии.

Потренируйтесь хотя бы одну неделю по полчаса в день, решая задания, схожие с представленными в данной статье. Тогда на любой контрольной по теории вероятности вы справитесь с примерами без посторонних подсказок и шпаргалок.

Важное значение для характеристики случайных величин имеет дисперсия.

Определение. Дисперсией случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания

Слово «дисперсия» означает «рассеяние», т.е. дисперсия характеризует рассеяние (разбросанность) значений случайной величины около ее математического ожидания.

Из определения следует, что дисперсия – это постоянная величина, т.е. числовая характеристика случайной величины, которая имеет размерность квадрата случайной величины.

С вероятной точки зрения, дисперсия является мерой рассеяния значений случайной величины около ее математического ожидания.

Действительно, рассмотрим дискретную случайную величину, которая имеет конечное множество значений. Тогда, согласно определению, дисперсия вычисляется по формуле

. (2)

Если дисперсия
мала, то из формулы (2) следует, что малы слагаемые. Поэтому, если не рассматривать значения
, которым соответствует малая вероятность (такие значения практически невозможны), то все остальные значениямало отклоняются от математического ожидания
. Следовательно,при малой дисперсии возможные значения случайной величины концентрируются около ее математического ожидания (за исключением, может быть, сравнительно малого числа отдельных значений). Если дисперсия
велика, то это означает большой разброс значений случайной величины, концентрация значений случайной величины около какого-нибудь центра исключается.

Пример. Пусть случайные величины
иимеют следующее законы распределения

Таблица 9. Таблица 10.

Найти математические ожидания и дисперсии этих случайных величин.

Решение. Воспользовавшись формулой для вычисления математических ожиданий, находим

С помощью формулы (2) вычислим дисперсии заданных случайных величин

Из полученных результатов делаем вывод: математические ожидания случайных величин
иодинаковы, однако дисперсии различны. Дисперсия случайной величины
мала и мы видим, что ее значение сконцентрированы около ее математического ожидания
. Напротив, значения случайной величинызначительно рассеяны относительно
, а поэтому дисперсия
имеет большое значение. ●

Свойства дисперсии

Свойство 1. Дисперсия постоянной величины равна нулю

Доказательство.

Свойство 2 . Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат

Доказательство.

Свойство 3. Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий

Доказательство. Воспользуемся определением дисперсии и свойствами 3, 2 математического ожидания, имеем

Определение. Математическое ожидание произведения отклонений случайных величин
и от их математических ожиданий называется корреляционным моментом этих величин

Если случайные величины, величины
инезависимы, то, воспользовавшись свойствами 6 и 7 математических ожиданий, находим

Поэтому из формулы 3 имеем

откуда окончательно следует

С помощью метода математической индукции это свойство может быть распространено на случай любого конечного числа независимых случайных величин.

Свойство 4. Дисперсия суммы независимых случайных величин
равна сумме их дисперсий

Свойство 5. Дисперсия разности двух случайных независимых величин равна сумме дисперсий этих величин

Доказательство.

Свойство 6. Дисперсия случайной величины равна математическому ожиданию

квадрата этой величины минус квадрат ее математического ожидания

(Эта формула применяется для вычисления дисперсии)

Доказательство.



Что еще почитать